In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE int...Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE into the field of underwater acoustic signal processing for complexity feature extraction of ship radiated noise,and then propose a novel classification method for ship-radiated noise based on RCMDE and k-nearest neighbor(KNN),termed RCMDE-KNN.The results of a comparative experiment show that the proposed RCMDE-KNN classification method can effectively extract the complexity features of ship-radiated noise,and has better classification performance under one and two scales than the other three classification methods based on multi-scale permutation entropy(MPE)and KNN,multi-scale weighted-permutation entropy(MW-PE)and KNN,and multi-scale dispersion entropy(MDE)and KNN,termed MPE-KNN,MW-PE-KNN,and MDE-KNN.It is proved that the RCMDE-KNN classification method for ship-radiated noise is feasible and effective,and can obtain a very high recognition rate.展开更多
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
基金supported by National Natural Science Foundation of China(No.61871318 and 61833013)Shaanxi Provincial Key Research and Development Project(No.2019GY-099).
文摘Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE into the field of underwater acoustic signal processing for complexity feature extraction of ship radiated noise,and then propose a novel classification method for ship-radiated noise based on RCMDE and k-nearest neighbor(KNN),termed RCMDE-KNN.The results of a comparative experiment show that the proposed RCMDE-KNN classification method can effectively extract the complexity features of ship-radiated noise,and has better classification performance under one and two scales than the other three classification methods based on multi-scale permutation entropy(MPE)and KNN,multi-scale weighted-permutation entropy(MW-PE)and KNN,and multi-scale dispersion entropy(MDE)and KNN,termed MPE-KNN,MW-PE-KNN,and MDE-KNN.It is proved that the RCMDE-KNN classification method for ship-radiated noise is feasible and effective,and can obtain a very high recognition rate.