Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat...Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.展开更多
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila...To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.展开更多
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn...Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.展开更多
In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons...In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.展开更多
A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse ...A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data.展开更多
The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in t...The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in the evidence. The modified algorithm is more powerful ability to rectify errors and less computational complexity in the circumstance of multi-evidence fusion processing than those of the D-S evidential reasoning algorithm.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new research...The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.展开更多
In order to improve the accuracy of fusion algorithm, feedback is introduced into Kalman filtering fusion. Fusion center broadcasts its latest estimated states to the local sensors, which can improve the performance o...In order to improve the accuracy of fusion algorithm, feedback is introduced into Kalman filtering fusion. Fusion center broadcasts its latest estimated states to the local sensors, which can improve the performance of local tracking error through reducing the oovariance of each local error, and only needs calculating the trace of error variance matrices without calculating the inverse of error variance matrices. Simulation results show that it can reduce the ecmputational complexity and the oovariance of error, and it is oonvenient for engineering applications.展开更多
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl...A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.展开更多
In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that t...In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that the solutions of sensor track fusion with and without feedback information are both optimal and equal.展开更多
Based on the single sensor Kalman filtering equations, this paper presents two-level and three-level optimal centralized and distributed estimation algorithms for hierarchical multisensor systems. The solution shows t...Based on the single sensor Kalman filtering equations, this paper presents two-level and three-level optimal centralized and distributed estimation algorithms for hierarchical multisensor systems. The solution shows that when the correlated matrix, the mean of noise, the control input, and the measurement error are all zero, the result in this paper turns out to be the standard algorithm discussed. Simulation shows that the mean of noise, the control input, and the measurement error will not change the estimation covariance and the estimation covariance fluctuates greatly when the cross-correlated matrix is similar to the covariance of process noise.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
文摘Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.
文摘To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
基金supported by the National Natural Science Foundation of China(61931015,62071335)the Science and Technology Program of Shenzhen(JCYJ20170818112037398)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.
文摘In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.
文摘A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data.
文摘The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in the evidence. The modified algorithm is more powerful ability to rectify errors and less computational complexity in the circumstance of multi-evidence fusion processing than those of the D-S evidential reasoning algorithm.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金supported by the National Natural Science Foundation of China(71471087)
文摘The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.
文摘In order to improve the accuracy of fusion algorithm, feedback is introduced into Kalman filtering fusion. Fusion center broadcasts its latest estimated states to the local sensors, which can improve the performance of local tracking error through reducing the oovariance of each local error, and only needs calculating the trace of error variance matrices without calculating the inverse of error variance matrices. Simulation results show that it can reduce the ecmputational complexity and the oovariance of error, and it is oonvenient for engineering applications.
文摘A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.
文摘In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that the solutions of sensor track fusion with and without feedback information are both optimal and equal.
文摘Based on the single sensor Kalman filtering equations, this paper presents two-level and three-level optimal centralized and distributed estimation algorithms for hierarchical multisensor systems. The solution shows that when the correlated matrix, the mean of noise, the control input, and the measurement error are all zero, the result in this paper turns out to be the standard algorithm discussed. Simulation shows that the mean of noise, the control input, and the measurement error will not change the estimation covariance and the estimation covariance fluctuates greatly when the cross-correlated matrix is similar to the covariance of process noise.
基金Supported in part by the University of Colorado, the US National Science Foundation (Grants CMS-9625086,CMS-0201459, IIS-9711936, and HRD-0095944) the US Office of Naval Research (Grants N00014-97-1-0642 and N00014-02-1-0136) the Colorado Center for Information Storage, the Colorado Advanced Software Institute, Maxtor Corporation, Quantum Corporation, Storage Technology Corporation, and Data Fusion Corporation
文摘Research in control systems, sensor fusion and haptic interfaces is reviewed.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.