The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit...The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.展开更多
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled...Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.展开更多
Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production....Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production. To date, these waste residues find no useful applications and they are generally disposed upon generation in the gasification process. A detailed analysis of these residues pointed out the presence of high quantities of Ca (〉30 wt%). TG experiments indicated that a treatment under air at moderate temperatures (400-800 ~C) decomposed the majority of carbon species, while XRD indicated the presence of a crystalline CaO phase. CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils, providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.展开更多
Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of devi...Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.展开更多
Background: Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat.Compared to other second-generation bioenergy sources, they do not compete for food, are relatively chea...Background: Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat.Compared to other second-generation bioenergy sources, they do not compete for food, are relatively cheap,abundant in forest-rich areas, and more importantly their energy balance is close to zero. Biomass estimations can help design energy strategies to reduce fossil fuels dependency. Because of the land property distribution in Mexico,biomass estimations should consider not only the physical availability, but also the willingness of landowners to extract such raw materials.Methods: This study presents a methodological approach for evaluating the potential use of forest residues as a feedstock to generate bioenergy in northern Mexico. Remote sensing and field forest inventory were used to estimate the quantity and distribution of forest residues. In addition, a discrete choice analysis evaluated landowners’ preferences towards bioenergy development, including the most important factors that influence their willingness to extract their products and the expected price.Results and conclusions: Considering both physical and socio-economic aspects, results showed that about59,000 metric tons per year could be available in the study area. The vast majority of landowners surveyed are willing to extract forest residues, as long as they are presented with extraction plans with the highest income. However, many showed concerns about the environmental impacts this activity can have on soils,plants, and fauna. These results can help evaluate the potential of these resources for bioenergy development.展开更多
This study established a method for the simultaneous determination of 74 pesticide residues in Panax notoginseng by QuEChERS pretreatment method coupled with GC-MS/MS,and carried out pesticide residue analysis on 20 b...This study established a method for the simultaneous determination of 74 pesticide residues in Panax notoginseng by QuEChERS pretreatment method coupled with GC-MS/MS,and carried out pesticide residue analysis on 20 batches of market samples in China.The samples were extracted with acetonitrile,cleaned up with primary secondary amine(PSA)and octadecylsilane(C18)and determined by GC-MS/MS in multiple reaction monitoring(MRM)mode.Matrix-matched calibration was recommended to combat the matrix effect.A good linearity was observed in the range of 10−500 ng/mL with correlation coefficients≥0.9950.The mean recoveries for most of the pesticides were in the range of 70%−120%with RSD<20%.The limits of detection ranged 0.28–2.00μg/kg,while the limits of quantification were 0.94–6.65μg/kg.Following the application of“top-down”approach,the expanded measurement uncertainty for all the analytes was<30%.The proposed method was successfully applied to determine pesticide residues in 20 market samples in China,where 9 pesticides were detected and quintozene exceeded the criteria domestically and abroad.展开更多
A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were deve...A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.展开更多
In this experiment,a liquid chromatography tandem mass spectrometry method was built to determine 15 pesticide residues in Chinese cabbage and cucumber samples based on online turbulent flow chromatography purificatio...In this experiment,a liquid chromatography tandem mass spectrometry method was built to determine 15 pesticide residues in Chinese cabbage and cucumber samples based on online turbulent flow chromatography purification.After modified quick,easy,cheap,effective,rugged,and safe(QuEChERS)extraction,extracts were directly injected to the TLX(TurboFlow Liquid Xcalibur)system and brought to TurboFlow™columns for on-line purification and then transferred to analytical column for further separation and analysis.TurboFlow™columns types,transfer flow rate,and transfer time were optimized.Limits of detection and limits of quantification of the method obtained for 15 pesticide residues were ranged between 0.2–1.0μg/kg and 0.5–2.0μg/kg in Chinese cabbage and cucumber samples.Recoveries of pesticide residues were in range of 75.3%–103.7%.Matrix effects for 15 pesticides were in range of 5.6%–106.6%.The developed method has been successfully used for the determination of 15 pesticide residues in real samples.展开更多
The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociatio...The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.展开更多
Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x...Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.展开更多
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor...Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Residues of 14C--f e.itrothio. in a model rice--fish ecosystem and field rice--fish ecosystem were studied. When equal amounts of the pesticide were applied, the extractable residues in brown rice (equivalent to 34.3f...Residues of 14C--f e.itrothio. in a model rice--fish ecosystem and field rice--fish ecosystem were studied. When equal amounts of the pesticide were applied, the extractable residues in brown rice (equivalent to 34.3f 1.9 μg / kg fenitrothion) and rice stems and leaves (20.9± 1.5 μg / kg) of the model rice-fish ecosystem were 10-15times higher than that of the field rice-fish ecosystem(4.48 ± 0.13 μg / kg and 1.27 ±0.34 μg / kg respectively). Residues in upper part of the soil (6.50± 0.1- 8.10±0.2 μg / kg) and lower part of the soil (1.30± 0.1-1.50±0.1μg / kg) of the model rice-fish ecosystem were 10-40 times higher than that of the field rice-fish ecosystem (0.17 ±0.01 μg / kg). The extractable residues in paddy water of the model ecosystem (0.30 ± 0.01 μg / kg) were similar to that of the field ecosystem (0.20 ± 0.02 μg / kg). Whenthe fenitrothion was sprayed on the rice plants, residues in brown rice, fish body, soiland paddy water were lower than those when the pesticide was sprayed on the surfaceof the soil.展开更多
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off...Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.展开更多
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ...Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.展开更多
Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large unce...Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.展开更多
Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.Howev...Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.展开更多
Two systems of additive equations were developed to predict aboveground stand level biomass in log products and harvest residue from routinely measured or predicted stand variables for Pinus radiata plantations in New...Two systems of additive equations were developed to predict aboveground stand level biomass in log products and harvest residue from routinely measured or predicted stand variables for Pinus radiata plantations in New South Wales,Australia.These plantations were managed under three thinning regimes or stand types before clear-felling at rotation age by cut-to-length harvesters to produce sawlogs and pulpwood.The residue material following a clear-fell operation mainly consisted of stumps,branches and treetops,short off-cut and waste sections due to stem deformity,defects,damage and breakage.One system of equations did not include dummy variables for stand types in the model specification and was intended for more general use in plantations where stand density management regimes were not the same as the stand types in our study.The other system that incorporated dummy variables was for stand type-specific applications.Both systems of equations were estimated using 61 plot-based estimates of biomass in commercial logs and residue components that were derived from systems of equations developed in situ for predicting the product and residue biomass of individual trees.To cater for all practical applications,two sets of parameters were estimated for each system of equations for predicting component and total aboveground stand biomass in fresh and dry weight respectively.The two sets of parameters for the system of equations without dummy variables were jointly estimated to improve statistical efficiency in parameter estimation.The predictive performances of the two systems of equations were benchmarked through a leave-one-plot-out cross validation procedure.They were generally superior to the performance of an alternative two-stage approach that combined an additive system for major components with an allocative system for sub-components.As using forest harvest residue biomass for bioenergy has increasingly become an integrated part of forestry,reliable estimates of product and residue biomass will assist harvest and management planning for clear-fell operations that integrate cut-to-length log production with residue harvesting.展开更多
The reason why chlorsulfuron(2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide)bound residues can still make an in-jury to rotational crops is still kept unknown. The experiment was c...The reason why chlorsulfuron(2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide)bound residues can still make an in-jury to rotational crops is still kept unknown. The experiment was conducted under laboratory conditions to determine the dynamics of extractable and non-extractable (bound) residues of chlorsulfuron in soil, and the distribution of chlorsulfuron bound residues in organic matter fractions. The results showed that extractable 14C-residues decreased t0 25.12% of applied chlorsulfuron over an incubation period of 150 days;this in turn, the formation of bound residues increased to 47.07% of the applied. The proportions of 14C-bound residues in soil organic matter fractions increase in order of: humic acid (HA)<humin<fulvic acid(FA), most of bound residues ekisted in FA fraction, however, the amount of bound residues in humin fraction increase with incubation time. The fact that most of bound residues existed in water-soluble FA fraction is tentatively regarded as one of major reasons why 14C-chlorsulfuron bound residues can still make an injury to rotational crops.展开更多
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
基金financially supported by the National Natural Science Foundation of China (22075308, 22209197)Natural Science Foundation of Shanxi Province (20210302 1224439, 202203021211002)Shanxi Province Science Foundation for Youths (No: SQ2019001)。
文摘The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.
基金supported by the National Natural Science Foundation of China(No.32192434)the National Key Research and Development Program of China(No.2022YFF1303003).
文摘Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.
基金the Gobierno de Espaa for the Provision of a Ramon y Cajal Contract (ref. RYC-2009-04199).supported by the Projects CTQ2010-18126 and CTQ2011 28954-C02-02 (MICINN) as well as P10-FQM-6711 (Consejeria de Ciencia e Innovacion,Junta de Andalucia)
文摘Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production. To date, these waste residues find no useful applications and they are generally disposed upon generation in the gasification process. A detailed analysis of these residues pointed out the presence of high quantities of Ca (〉30 wt%). TG experiments indicated that a treatment under air at moderate temperatures (400-800 ~C) decomposed the majority of carbon species, while XRD indicated the presence of a crystalline CaO phase. CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils, providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.
基金the National Basic Research Program of China(Grant No.2013CBA01604)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.
文摘Background: Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat.Compared to other second-generation bioenergy sources, they do not compete for food, are relatively cheap,abundant in forest-rich areas, and more importantly their energy balance is close to zero. Biomass estimations can help design energy strategies to reduce fossil fuels dependency. Because of the land property distribution in Mexico,biomass estimations should consider not only the physical availability, but also the willingness of landowners to extract such raw materials.Methods: This study presents a methodological approach for evaluating the potential use of forest residues as a feedstock to generate bioenergy in northern Mexico. Remote sensing and field forest inventory were used to estimate the quantity and distribution of forest residues. In addition, a discrete choice analysis evaluated landowners’ preferences towards bioenergy development, including the most important factors that influence their willingness to extract their products and the expected price.Results and conclusions: Considering both physical and socio-economic aspects, results showed that about59,000 metric tons per year could be available in the study area. The vast majority of landowners surveyed are willing to extract forest residues, as long as they are presented with extraction plans with the highest income. However, many showed concerns about the environmental impacts this activity can have on soils,plants, and fauna. These results can help evaluate the potential of these resources for bioenergy development.
基金the National Key Research and Development Plan of China(2017YFC1702500).
文摘This study established a method for the simultaneous determination of 74 pesticide residues in Panax notoginseng by QuEChERS pretreatment method coupled with GC-MS/MS,and carried out pesticide residue analysis on 20 batches of market samples in China.The samples were extracted with acetonitrile,cleaned up with primary secondary amine(PSA)and octadecylsilane(C18)and determined by GC-MS/MS in multiple reaction monitoring(MRM)mode.Matrix-matched calibration was recommended to combat the matrix effect.A good linearity was observed in the range of 10−500 ng/mL with correlation coefficients≥0.9950.The mean recoveries for most of the pesticides were in the range of 70%−120%with RSD<20%.The limits of detection ranged 0.28–2.00μg/kg,while the limits of quantification were 0.94–6.65μg/kg.Following the application of“top-down”approach,the expanded measurement uncertainty for all the analytes was<30%.The proposed method was successfully applied to determine pesticide residues in 20 market samples in China,where 9 pesticides were detected and quintozene exceeded the criteria domestically and abroad.
基金supported by National Key Research and Development Program of China(2018YFC1603400)Special Technical Support Project of State Administration for Market Regulation(2019YJ009).
文摘A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.
基金National Key Research and Development Program of China(Project No.2018YFC1603400)Science and Technology Program of Hebei Province(Project No.19225503D)Technical Support Project of State Administration for Market Regulation(Project No.2019YJ009).
文摘In this experiment,a liquid chromatography tandem mass spectrometry method was built to determine 15 pesticide residues in Chinese cabbage and cucumber samples based on online turbulent flow chromatography purification.After modified quick,easy,cheap,effective,rugged,and safe(QuEChERS)extraction,extracts were directly injected to the TLX(TurboFlow Liquid Xcalibur)system and brought to TurboFlow™columns for on-line purification and then transferred to analytical column for further separation and analysis.TurboFlow™columns types,transfer flow rate,and transfer time were optimized.Limits of detection and limits of quantification of the method obtained for 15 pesticide residues were ranged between 0.2–1.0μg/kg and 0.5–2.0μg/kg in Chinese cabbage and cucumber samples.Recoveries of pesticide residues were in range of 75.3%–103.7%.Matrix effects for 15 pesticides were in range of 5.6%–106.6%.The developed method has been successfully used for the determination of 15 pesticide residues in real samples.
基金supported by the Major State Basic Research Development Program of China (973 Program, No. 2012CB224801)
文摘The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.
基金Research carried out with the support of IAEA under Research Contract No. 4233/RB
文摘Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.
基金financially supported by the National Natural Science Foundation of China(U21A2078,22179042,and 12104170)the Natural Science Foundation of Fujian Province(2020J06021 and 2020J01064)Scientific Research Funds of Huaqiao University(23BS109)。
文摘Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
文摘Residues of 14C--f e.itrothio. in a model rice--fish ecosystem and field rice--fish ecosystem were studied. When equal amounts of the pesticide were applied, the extractable residues in brown rice (equivalent to 34.3f 1.9 μg / kg fenitrothion) and rice stems and leaves (20.9± 1.5 μg / kg) of the model rice-fish ecosystem were 10-15times higher than that of the field rice-fish ecosystem(4.48 ± 0.13 μg / kg and 1.27 ±0.34 μg / kg respectively). Residues in upper part of the soil (6.50± 0.1- 8.10±0.2 μg / kg) and lower part of the soil (1.30± 0.1-1.50±0.1μg / kg) of the model rice-fish ecosystem were 10-40 times higher than that of the field rice-fish ecosystem (0.17 ±0.01 μg / kg). The extractable residues in paddy water of the model ecosystem (0.30 ± 0.01 μg / kg) were similar to that of the field ecosystem (0.20 ± 0.02 μg / kg). Whenthe fenitrothion was sprayed on the rice plants, residues in brown rice, fish body, soiland paddy water were lower than those when the pesticide was sprayed on the surfaceof the soil.
基金supported by the National Key Research and Development Project(2019YFC1906601)China the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences(C12021A04111)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ-040).
文摘Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202200550)the Natural Science Foundation Joint Fund for Innovation and Development of Chongqing Municipal Education Commission(CSTB2022NSCQ-LZX0077)+4 种基金the National Natural Science Foundation of China(No.52100065)the Science and Technology Research Program of Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0037)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202200503)the Chongqing Innovation Research Group Project(No.CXQT21015)the Doctor Start/Talent Introduction Program of Chongqing Normal University(No.02060404/2020009000321)。
文摘Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.
基金financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(41825020)General Program(31870461)+3 种基金the“Hundred Talent Program”of South China Botanical Garden at the Chinese Academy of Sciences(Y761031001)the“Young Top-notch Talent”in Pearl River talent plan of Guangdong Province(2019QN01L763)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012147)the China Scholarships Council(No.202004910605).
文摘Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.
基金This work was supported within the XyloDensMap project,INRAE funded by the French Ministry of Agriculture under the convention n°A6.01/2017.
文摘Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.
基金This study was supported by the Australian Government Department of Agriculture,Fisheries and Forestry,the Rural Industries Research and Development Corporation,and Forests NSW.
文摘Two systems of additive equations were developed to predict aboveground stand level biomass in log products and harvest residue from routinely measured or predicted stand variables for Pinus radiata plantations in New South Wales,Australia.These plantations were managed under three thinning regimes or stand types before clear-felling at rotation age by cut-to-length harvesters to produce sawlogs and pulpwood.The residue material following a clear-fell operation mainly consisted of stumps,branches and treetops,short off-cut and waste sections due to stem deformity,defects,damage and breakage.One system of equations did not include dummy variables for stand types in the model specification and was intended for more general use in plantations where stand density management regimes were not the same as the stand types in our study.The other system that incorporated dummy variables was for stand type-specific applications.Both systems of equations were estimated using 61 plot-based estimates of biomass in commercial logs and residue components that were derived from systems of equations developed in situ for predicting the product and residue biomass of individual trees.To cater for all practical applications,two sets of parameters were estimated for each system of equations for predicting component and total aboveground stand biomass in fresh and dry weight respectively.The two sets of parameters for the system of equations without dummy variables were jointly estimated to improve statistical efficiency in parameter estimation.The predictive performances of the two systems of equations were benchmarked through a leave-one-plot-out cross validation procedure.They were generally superior to the performance of an alternative two-stage approach that combined an additive system for major components with an allocative system for sub-components.As using forest harvest residue biomass for bioenergy has increasingly become an integrated part of forestry,reliable estimates of product and residue biomass will assist harvest and management planning for clear-fell operations that integrate cut-to-length log production with residue harvesting.
文摘The reason why chlorsulfuron(2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide)bound residues can still make an in-jury to rotational crops is still kept unknown. The experiment was conducted under laboratory conditions to determine the dynamics of extractable and non-extractable (bound) residues of chlorsulfuron in soil, and the distribution of chlorsulfuron bound residues in organic matter fractions. The results showed that extractable 14C-residues decreased t0 25.12% of applied chlorsulfuron over an incubation period of 150 days;this in turn, the formation of bound residues increased to 47.07% of the applied. The proportions of 14C-bound residues in soil organic matter fractions increase in order of: humic acid (HA)<humin<fulvic acid(FA), most of bound residues ekisted in FA fraction, however, the amount of bound residues in humin fraction increase with incubation time. The fact that most of bound residues existed in water-soluble FA fraction is tentatively regarded as one of major reasons why 14C-chlorsulfuron bound residues can still make an injury to rotational crops.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.