The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite p...The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.展开更多
The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unif...The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an i...In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.展开更多
基金Supported by the National Key Basic Research Special Fund(2003CB415200)the National Science Foundation(70371032 and 60274048)the Doctoral Foundation of the Ministry of Education(20020486035)
文摘The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.
基金Supported by the Science Foundation of Shaanxi Provincial Educational Department Natural Science Foundation of China(06JK152) Supported by the Graduate Innovation Project of Yanan uni- versity(YCX201003)
文摘The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
基金supported by National Natural Science Foundation of China(72031009 and 71871171)the National Social Science Foundation of China(20&ZD058).
文摘In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.