Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controlle...A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.展开更多
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump...Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.展开更多
A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assum...A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.展开更多
An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the...An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.展开更多
Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome ...Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.展开更多
Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focu...Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focuses on a single economic goal.However,the increasingly complex demands of energy systems necessitate the comprehensive consideration of multiple dimensional objectives,such as environmental,social,and energy security.Therefore,a multi-objective optimization of long-term energy system models has been developed.Herein,studies pertaining to the multi-objective optimization of long-term energy system models are summarized;the optimization objectives of long-term energy system models are classified into economic,environmental,social,and energy security aspects;and the multi-objective optimization methods are classified and explained based on the preferential expression of decision makers.Finally,the key development direction of the multi-objective optimization of energy system models is discussed.展开更多
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys...Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.展开更多
There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption a...There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.展开更多
According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times o...According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times of trains at each station are determined. We test the proposed method on an assumed railway network. The numerical simulations and the analytical results demonstrate that the proposed method provides an effective tool for scheduling trains. Some characteristic behaviours of train movement can be reproduced, such as train delay.展开更多
A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained ...A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained which present by Buyya, point out shortcoming of Buyya's schedule method. Considerate integrate factor of time and budget, by import a weight coefficient named a , puts forward a new resource schedule method named STPP based on economic models of Buyya. Contrast to old schedule strategy of Buyya through analysis and experiments, STPP policy is more flexible, and is easy to import other new QoS parameters.展开更多
This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determi...This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determine the equilibrium state in which each supplier earns maximum profit from supplying electricity to the wholesale market.We estimated the maximum value of public welfare,which indicates the total financial gains of suppliers and consumers,to determine the prices at the nodes of the power system.This was done by considering the balance constraints at the nodes of the power system and constraints on the allowable values of generation,power flows,and volumes of energy resources consumed over several time intervals.This problem belongs to the class of bi-level Stackelberg game-theoretic models with several leaders.The market equilibrium is modeled simultaneously in several intervals,given the multiplicity and duration of interactions.We considered two approaches for solving the multi-interval equilibrium state problem.The first approach involved directly solving a system of joint optimality conditions for electricity suppliers and consumers.The second approach involved iterative searches until the equilibrium state was reached.This article presents the results of medium-term scheduling using a case study of a simplified real-world power system.展开更多
The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse ...The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.展开更多
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
文摘A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.
基金partially been sponsored by the National Science Foundation of China(No.61572355,61272093,610172063)Tianjin Research Program of Application Foundation and Advanced Technology under grant No.15JCYBJC15700
文摘Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.
基金Sponsored by the Basic Research Foundation of Beijing Institute of Technology (BIT-UBF-200508G4212)
文摘A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.
基金supported by the National Natural Science Foundation of China (Nos. 71273277/71373285/71303258)the Philosophy and Social Sciences Major Research Project of the Ministry of Education (No. 11JZD048)
文摘An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.
基金supported by the National Natural Science Foundation of China under Grants 62272256,61832012,and 61771289Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research under Grant ZR2022ZD03+1 种基金the Pilot Project for Integrated Innovation of Science,Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)under Grant 2022XD001Shandong Province Fundamental Research under Grant ZR201906140028。
文摘Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.
基金This research was financially supported by the National Natural Science Foundation of China(No.72371102).
文摘Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focuses on a single economic goal.However,the increasingly complex demands of energy systems necessitate the comprehensive consideration of multiple dimensional objectives,such as environmental,social,and energy security.Therefore,a multi-objective optimization of long-term energy system models has been developed.Herein,studies pertaining to the multi-objective optimization of long-term energy system models are summarized;the optimization objectives of long-term energy system models are classified into economic,environmental,social,and energy security aspects;and the multi-objective optimization methods are classified and explained based on the preferential expression of decision makers.Finally,the key development direction of the multi-objective optimization of energy system models is discussed.
基金supported by the National Key R&D Program of China (2016YFC0402209)the Major Research Plan of the National Natural Science Foundation of China (No. 91647114)
文摘Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.
基金Financial support from National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05017-004)
文摘There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60634010 and 60776829)the New Century Excellent Talents in University (Grant No. NCET-06-0074)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University (Grant No. RCS2008ZZ001)
文摘According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times of trains at each station are determined. We test the proposed method on an assumed railway network. The numerical simulations and the analytical results demonstrate that the proposed method provides an effective tool for scheduling trains. Some characteristic behaviours of train movement can be reproduced, such as train delay.
文摘A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained which present by Buyya, point out shortcoming of Buyya's schedule method. Considerate integrate factor of time and budget, by import a weight coefficient named a , puts forward a new resource schedule method named STPP based on economic models of Buyya. Contrast to old schedule strategy of Buyya through analysis and experiments, STPP policy is more flexible, and is easy to import other new QoS parameters.
基金the State Assignment Project (No. FWEU-754 2021-0001) of the Basic Research Program of the Russian Federation 2021-2030
文摘This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determine the equilibrium state in which each supplier earns maximum profit from supplying electricity to the wholesale market.We estimated the maximum value of public welfare,which indicates the total financial gains of suppliers and consumers,to determine the prices at the nodes of the power system.This was done by considering the balance constraints at the nodes of the power system and constraints on the allowable values of generation,power flows,and volumes of energy resources consumed over several time intervals.This problem belongs to the class of bi-level Stackelberg game-theoretic models with several leaders.The market equilibrium is modeled simultaneously in several intervals,given the multiplicity and duration of interactions.We considered two approaches for solving the multi-interval equilibrium state problem.The first approach involved directly solving a system of joint optimality conditions for electricity suppliers and consumers.The second approach involved iterative searches until the equilibrium state was reached.This article presents the results of medium-term scheduling using a case study of a simplified real-world power system.
文摘The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.