Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by u...A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evo...Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjud...The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
针对航空装备在寿命周期内不只经历一个任务阶段,而当前加速寿命试验(accelerated life test,ALT)优化设计大多仅关注单一任务阶段的情况,提出一种综合环境下两阶段ALT优化设计方法。该方法采用拉丁超立方设计(Latin hypercube design,L...针对航空装备在寿命周期内不只经历一个任务阶段,而当前加速寿命试验(accelerated life test,ALT)优化设计大多仅关注单一任务阶段的情况,提出一种综合环境下两阶段ALT优化设计方法。该方法采用拉丁超立方设计(Latin hypercube design,LHD)确定两阶段试验整体的应力水平组合方式,解决前后阶段应力水平的组合问题;以两阶段试验中产品正常应力水平下P阶分位寿命估计的渐近方差之和最小为优化目标,构建优化设计的数学模型,解决前后阶段的样本分配问题。算例分析表明两阶段ALT优化设计方法的预测精度优于传统方法,参数敏感性分析表明该方法确定的最优试验方案具有一定的稳健性。该方法为实际工程中多任务阶段产品的ALT优化设计提供了一种新思路。展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6147315961374136+1 种基金61104028)the Research Innovation Program of Nantong University(YKC16004)
文摘A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
基金supported by the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC03).
文摘Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
基金Supported by the Harbin Engineering University Fund for Basic Projects (heuft06041)
文摘The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
文摘针对航空装备在寿命周期内不只经历一个任务阶段,而当前加速寿命试验(accelerated life test,ALT)优化设计大多仅关注单一任务阶段的情况,提出一种综合环境下两阶段ALT优化设计方法。该方法采用拉丁超立方设计(Latin hypercube design,LHD)确定两阶段试验整体的应力水平组合方式,解决前后阶段应力水平的组合问题;以两阶段试验中产品正常应力水平下P阶分位寿命估计的渐近方差之和最小为优化目标,构建优化设计的数学模型,解决前后阶段的样本分配问题。算例分析表明两阶段ALT优化设计方法的预测精度优于传统方法,参数敏感性分析表明该方法确定的最优试验方案具有一定的稳健性。该方法为实际工程中多任务阶段产品的ALT优化设计提供了一种新思路。