The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys...Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
提出一种基于改进粒子群算法和模糊控制的无功分层协调优化控制方法。通过建立风机与光伏出力预测模型,并制定分层协调控制策略,实现风电场、光伏电站及系统整体层面的无功优化。实验结果显示,与传统比例-积分-微分(Proportional Integr...提出一种基于改进粒子群算法和模糊控制的无功分层协调优化控制方法。通过建立风机与光伏出力预测模型,并制定分层协调控制策略,实现风电场、光伏电站及系统整体层面的无功优化。实验结果显示,与传统比例-积分-微分(Proportional Integral Derivative,PID)控制相比,新方法在降低电压偏差率、减少系统网损、缩短无功优化时间以及增强控制策略健壮性方面表现出显著优势,证实其在实际应用中的有效性。展开更多
针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建...针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建立了含SST的有源配电网动态无功优化模型;然后以多时刻的有功网损和电压波动为优化目标,采用改进多目标粒子群算法对SST的一、二次侧的电力电子变换器的调制角和调制系数等多个控制变量进行求解;最后建立仿真模型并与基于有载调压变压器的有源配电网动态无功优化方法进行比较。结果证明了所提方法在降低配电网网损和维持节点电压稳定方面的优越性。展开更多
随着大量分布式光伏(distributed photovoltaic,DPV)并网,目前配电网中出现了日间过压和夜间低压并存的电压越限问题,并进一步影响了网络的经济运行。本工作基于此提出了两阶段光储系统协同运行的优化调度策略。该策略第一阶段通过计算...随着大量分布式光伏(distributed photovoltaic,DPV)并网,目前配电网中出现了日间过压和夜间低压并存的电压越限问题,并进一步影响了网络的经济运行。本工作基于此提出了两阶段光储系统协同运行的优化调度策略。该策略第一阶段通过计算节点的电压灵敏度来确定待调节的储能节点与充放功率,以及光伏可调节点;第二阶段建立了光储运行优化模型。该模型以储能的调度成本、购售电成本以及网损成本之和最小为目标,以网络潮流、节点电压、储能SOC(state of charge)、光伏的无功可调容量等作为约束,通过粒子群算法对该模型进行求解,可以得到光储系统日调度出力策略。最后,以某地区31节点的实际配电网作为算例,验证了本工作方法的有效性。算例结果表明,该策略可以通过光储的协同调度,有效治理电网中的电压越限问题,并且在保障配电网电压安全的同时,实现优化运行成本的目标。展开更多
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金supported by the National Key R&D Program of China (2016YFC0402209)the Major Research Plan of the National Natural Science Foundation of China (No. 91647114)
文摘Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
文摘提出一种基于改进粒子群算法和模糊控制的无功分层协调优化控制方法。通过建立风机与光伏出力预测模型,并制定分层协调控制策略,实现风电场、光伏电站及系统整体层面的无功优化。实验结果显示,与传统比例-积分-微分(Proportional Integral Derivative,PID)控制相比,新方法在降低电压偏差率、减少系统网损、缩短无功优化时间以及增强控制策略健壮性方面表现出显著优势,证实其在实际应用中的有效性。
文摘针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建立了含SST的有源配电网动态无功优化模型;然后以多时刻的有功网损和电压波动为优化目标,采用改进多目标粒子群算法对SST的一、二次侧的电力电子变换器的调制角和调制系数等多个控制变量进行求解;最后建立仿真模型并与基于有载调压变压器的有源配电网动态无功优化方法进行比较。结果证明了所提方法在降低配电网网损和维持节点电压稳定方面的优越性。
文摘随着大量分布式光伏(distributed photovoltaic,DPV)并网,目前配电网中出现了日间过压和夜间低压并存的电压越限问题,并进一步影响了网络的经济运行。本工作基于此提出了两阶段光储系统协同运行的优化调度策略。该策略第一阶段通过计算节点的电压灵敏度来确定待调节的储能节点与充放功率,以及光伏可调节点;第二阶段建立了光储运行优化模型。该模型以储能的调度成本、购售电成本以及网损成本之和最小为目标,以网络潮流、节点电压、储能SOC(state of charge)、光伏的无功可调容量等作为约束,通过粒子群算法对该模型进行求解,可以得到光储系统日调度出力策略。最后,以某地区31节点的实际配电网作为算例,验证了本工作方法的有效性。算例结果表明,该策略可以通过光储的协同调度,有效治理电网中的电压越限问题,并且在保障配电网电压安全的同时,实现优化运行成本的目标。