An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with t...A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal sys...In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe展开更多
Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ran...Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ranking approaches are based on the self-evaluation efficiencies.In other words,each DMU chooses the weights it prefers to most,so the resulted efficiencies are not suitable to be used as ranking criteria.Therefore this paper proposes a new approach to determine a bundle of common weights in DEA efficiency evaluation model by introducing a multi-objective integer programming.The paper also gives the solving process of this multi-objective integer programming,and the solution is proven a Pareto efficient solution.The solving process ensures that the obtained common weight bundle is acceptable by a great number of DMUs.Finally a numeral example is given to demonstrate the approach.展开更多
回归测试用例选择(Regression Test Case Selection,RTS)问题是回归测试研究中的一个热点,旨在从已有测试用例集中选择出所有可检测代码修改的测试用例。但迄今为止,国内研究人员并未对RTS问题的已有研究成果进行系统总结和比较。首先...回归测试用例选择(Regression Test Case Selection,RTS)问题是回归测试研究中的一个热点,旨在从已有测试用例集中选择出所有可检测代码修改的测试用例。但迄今为止,国内研究人员并未对RTS问题的已有研究成果进行系统总结和比较。首先在回归测试活动和测试用例划分基础上,引出RTS问题和相关假设。随后从源代码和模型角度对已有RTS技术进行分类,从源代码角度出发,又进一步将其细分为线性规划法、数据流分析法、图遍历法、程序切片法和防火墙法等。接着对常见评测数据集和评测指标进行总结,最后对该问题的未来研究方向进行了展望。展开更多
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.
基金supported by the Key International Cooperation Research Project(61720106003)the National Natural Science Foundation of China(62001517)+2 种基金the Shanghai Aerospace Science and Technology Innovation Foundation(SAST2019-095)the NUPTSF(NY220111)the Foundational Research Project of Complex Electronic System Simulation Laboratory(DXZT-JC-ZZ-2019-009,DXZTJC-ZZ-2019-005).
文摘A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金ESPRIT Basic Research ProCoS project 3104 and 7071
文摘In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe
基金supported by the National Natural Science Foundation of China for Innovative Research Groups(70821001)and the National Natural Science Foundation of China(70801056)
文摘Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ranking approaches are based on the self-evaluation efficiencies.In other words,each DMU chooses the weights it prefers to most,so the resulted efficiencies are not suitable to be used as ranking criteria.Therefore this paper proposes a new approach to determine a bundle of common weights in DEA efficiency evaluation model by introducing a multi-objective integer programming.The paper also gives the solving process of this multi-objective integer programming,and the solution is proven a Pareto efficient solution.The solving process ensures that the obtained common weight bundle is acceptable by a great number of DMUs.Finally a numeral example is given to demonstrate the approach.
文摘回归测试用例选择(Regression Test Case Selection,RTS)问题是回归测试研究中的一个热点,旨在从已有测试用例集中选择出所有可检测代码修改的测试用例。但迄今为止,国内研究人员并未对RTS问题的已有研究成果进行系统总结和比较。首先在回归测试活动和测试用例划分基础上,引出RTS问题和相关假设。随后从源代码和模型角度对已有RTS技术进行分类,从源代码角度出发,又进一步将其细分为线性规划法、数据流分析法、图遍历法、程序切片法和防火墙法等。接着对常见评测数据集和评测指标进行总结,最后对该问题的未来研究方向进行了展望。