期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
2
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
3
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm OPTIMIZATION particle SWARM OPTIMIZATION (PSO) CLOUD computing system
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
4
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
5
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
6
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
7
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
含大规模间歇式电源的模糊机会约束机组组合研究 被引量:120
8
作者 熊虎 向铁元 +2 位作者 陈红坤 林芳 苏井辉 《中国电机工程学报》 EI CSCD 北大核心 2013年第13期36-44,共9页
间歇式电源具有难以预测的间歇性和波动性,大规模接入电网后增加了调度决策的复杂性。针对大规模间歇式电源的不确定性,引入模糊理论,将间歇式电源出力和负荷用模糊参数表示,对传统确定性机组组合模型进行改进,将确定性的系统约束改为... 间歇式电源具有难以预测的间歇性和波动性,大规模接入电网后增加了调度决策的复杂性。针对大规模间歇式电源的不确定性,引入模糊理论,将间歇式电源出力和负荷用模糊参数表示,对传统确定性机组组合模型进行改进,将确定性的系统约束改为模糊参数下的系统约束,并基于可信性理论形成了模糊机会约束,建立含多模糊参数的模糊机会约束机组组合数学模型。研究含梯形或三角形模糊参数的模糊机会约束的清晰等价类,将机会约束清晰化,并提出改进二进制粒子群优化算法的求解流程,对模糊机会约束机组组合模型进行求解。算例分析验证了所提模型和算法的有效性和实用性。 展开更多
关键词 间歇电源 机组组合 模糊机会约束 可信性理论 粒子群算法
在线阅读 下载PDF
含风电的电力系统动态经济调度模型 被引量:73
9
作者 张海峰 高峰 +1 位作者 吴江 刘坤 《电网技术》 EI CSCD 北大核心 2013年第5期1298-1303,共6页
电力系统的经济调度必须考虑风电的波动性和随机性带来的影响。引入概率约束,定义了风电场计划出力实现的概率,研究了含风电场的电力系统动态经济调度模型。通过计算下一调度日风电场实际出力的条件期望与计划出力的差值,确定了风电对... 电力系统的经济调度必须考虑风电的波动性和随机性带来的影响。引入概率约束,定义了风电场计划出力实现的概率,研究了含风电场的电力系统动态经济调度模型。通过计算下一调度日风电场实际出力的条件期望与计划出力的差值,确定了风电对系统正、负旋转备用的需求。利用分位数的概念,将含有概率约束的随机调度模型等价地转换为确定性模型。提出了一种改进的粒子群算法来求解转换后的确定性模型。仿真实验结果表明,这种含风电场的电力系统动态经济调度模型能有效应对风电接入引起的备用需求变化,所得的调度方案在保证系统可靠性的前提下能节省更多的成本。 展开更多
关键词 风电 动态经济调度 旋转备用 概率约束 粒子群优化算法
在线阅读 下载PDF
基于随机惯量权重的快速粒子群优化算法 被引量:35
10
作者 黄轩 张军 詹志辉 《计算机工程与设计》 CSCD 北大核心 2009年第3期647-650,663,共5页
在6个标准测试函数的基础上,对惯量权重进行了调查研究,并且分析了惯量权重对算法的影响,提出了一种让惯量权重的取值随机均匀地落在区间[0.4,0.6]内的新方法,用以平衡全局搜索能力和局部开发能力。数值实验的结果表明,该方法比传统的... 在6个标准测试函数的基础上,对惯量权重进行了调查研究,并且分析了惯量权重对算法的影响,提出了一种让惯量权重的取值随机均匀地落在区间[0.4,0.6]内的新方法,用以平衡全局搜索能力和局部开发能力。数值实验的结果表明,该方法比传统的权重线性递减(LDW)具有更快的收敛速度并且能获得更好的解。 展开更多
关键词 粒子群优化算法 惯量权重 快速 随机 改善
在线阅读 下载PDF
基于Kriging模型的驾驶室悬置系统多目标优化 被引量:13
11
作者 蒋荣超 王登峰 +2 位作者 吕文超 刘汉光 徐昌城 《农业机械学报》 EI CAS CSCD 北大核心 2015年第3期344-350,共7页
为提高某国产自卸车行驶平顺性,采用多体动力学软件Adams建立重型自卸车整车虚拟样机分析模型,并通过行驶平顺性道路试验验证模型的正确性。选取驾驶室悬置刚度和阻尼参数为设计变量,以驾驶室地板垂向和座椅支撑面俯仰加权加速度均方根... 为提高某国产自卸车行驶平顺性,采用多体动力学软件Adams建立重型自卸车整车虚拟样机分析模型,并通过行驶平顺性道路试验验证模型的正确性。选取驾驶室悬置刚度和阻尼参数为设计变量,以驾驶室地板垂向和座椅支撑面俯仰加权加速度均方根为优化目标,以驾驶室前后悬置动挠度为约束条件,结合最优拉丁方试验设计拟合Kriging近似模型,利用粒子群优化算法对自卸车行驶平顺性进行多目标优化,得到Pareto最优解集,并选取一个最优解进行整车行驶平顺性实车试验。结果表明,Kriging近似模型具有较高的拟合精度,可大幅提高自卸车行驶平顺性优化效率;基于Kriging近似模型的多目标优化结果可通过权重系数对各个优化目标进行权衡,有效改善了自卸车行驶平顺性。 展开更多
关键词 驾驶室悬置系统 Kriging近似模型 行驶平顺性 粒子群优化
在线阅读 下载PDF
基于改进的粒子群遗传算法的DNA编码序列优化 被引量:28
12
作者 崔光照 李小广 +2 位作者 张勋才 王延峰 李翠玲 《计算机学报》 EI CSCD 北大核心 2010年第2期311-316,共6页
在DNA计算中,DNA编码序列的设计是影响DNA计算可靠性的重要手段.在不同的DNA序列设计中,应该选择适当的约束条件,并且根据相应的约束条件提出每个DNA应该相应满足的评估公式.文中从DNA编码设计应满足的多约束条件中选取适当的约束条件,... 在DNA计算中,DNA编码序列的设计是影响DNA计算可靠性的重要手段.在不同的DNA序列设计中,应该选择适当的约束条件,并且根据相应的约束条件提出每个DNA应该相应满足的评估公式.文中从DNA编码设计应满足的多约束条件中选取适当的约束条件,提出评估公式,并采用改进的粒子群遗传算法来解决多目标优化问题.同时根据得到的序列与已有序列在综合适应度函数结果上进行对比,结果证明了该方法的有效性. 展开更多
关键词 DNA计算 DNA编码 多目标优化 改进的粒子群遗传算法
在线阅读 下载PDF
基于佳点集构造的改进量子粒子群优化算法 被引量:30
13
作者 陈义雄 梁昔明 黄亚飞 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期1409-1414,共6页
针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,... 针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理。仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高。 展开更多
关键词 粒子群优化 混沌 早熟收敛 佳点集 量子粒子群优化
在线阅读 下载PDF
对称结构Stewart机构位置正解的改进粒子群算法 被引量:23
14
作者 车林仙 何兵 +2 位作者 易建 陈长忆 罗佑新 《农业机械学报》 EI CAS CSCD 北大核心 2008年第10期158-163,共6页
根据杆长约束条件,建立了求6-DOF对称结构Stewart并联机器人机构位置正解的无约束优化模型。针对标准粒子群算法容易陷入局部极值、进化后期收敛速度慢等缺点,提出了一种基于差异度评价指标的改进粒子群算法——自适应变异粒子群算法。... 根据杆长约束条件,建立了求6-DOF对称结构Stewart并联机器人机构位置正解的无约束优化模型。针对标准粒子群算法容易陷入局部极值、进化后期收敛速度慢等缺点,提出了一种基于差异度评价指标的改进粒子群算法——自适应变异粒子群算法。为克服随机算法不易求出并联机构全部位置正解的缺点,采用分层搜索自适应变异粒子群算法求并联机构位置正解中的优化问题。数值实例表明,对于对称结构Stewart并联机器人机构位置正解问题,改进粒子群算法能求出全部装配构型,且收敛速度较快、精度较高。 展开更多
关键词 STEWART并联机构 位置正解 粒子群算法 自适应变异 分层搜索
在线阅读 下载PDF
基于混合粒子群算法的多目标柔性Job-Shop调度方法 被引量:18
15
作者 刘明周 张明伟 +2 位作者 蒋增强 葛茂根 张铭鑫 《农业机械学报》 EI CAS CSCD 北大核心 2008年第5期122-127,共6页
针对经典Job-Shop调度问题的局限性,提出了以时间、成本、质量三者综合为优化目标,具有柔性Job-Shop车间调度的优化模型。给出了优化目标的计算方法,并设计了混合粒子群算法,给出了使用此算法求解模型的具体实现过程。模型采用工序能力... 针对经典Job-Shop调度问题的局限性,提出了以时间、成本、质量三者综合为优化目标,具有柔性Job-Shop车间调度的优化模型。给出了优化目标的计算方法,并设计了混合粒子群算法,给出了使用此算法求解模型的具体实现过程。模型采用工序能力指数对质量目标进行量化,并采用综合评判线性加权模型解决柔性Job-Shop算法的权重选择问题,使决策者能够根据实际情况选择优化目标的偏好解。通过一个车间调度问题的实例验证了此调度模型和算法的有效性。 展开更多
关键词 柔性车间调度 多目标优化 混合粒子群算法
在线阅读 下载PDF
一种面向三维感知的无线多媒体传感器网络覆盖增强算法 被引量:24
16
作者 肖甫 王汝传 +1 位作者 孙力娟 翁娇艳 《电子学报》 EI CAS CSCD 北大核心 2012年第1期167-172,共6页
覆盖作为无线传感器网络中的基础问题直接反映了网络感知服务质量.本文在分析现有无线多媒体传感器网络覆盖增强算法的基础上,构建节点三维感知模型,提出面向三维感知的多媒体传感器网络覆盖增强算法(Three-Dimensional Perception Base... 覆盖作为无线传感器网络中的基础问题直接反映了网络感知服务质量.本文在分析现有无线多媒体传感器网络覆盖增强算法的基础上,构建节点三维感知模型,提出面向三维感知的多媒体传感器网络覆盖增强算法(Three-Dimensional Perception Based Coverage-Enhancing Algorithm,TDPCA).该算法将节点主感知方向划分为仰俯角和偏向角,并根据节点自身位置及监测区域计算并调整各节点最佳仰俯角,在此基础上基于粒子群优化调整节点偏向角,从而有效减少节点感知重叠区及感知盲区,最终实现监测场景的区域覆盖增强.仿真实验表明:对比已有的覆盖增强算法,TDPCA可有效降低除节点感知重叠区和盲区,最终实现网络的高效覆盖. 展开更多
关键词 无线多媒体传感器网络 三维感知模型 覆盖增强 粒子群优化
在线阅读 下载PDF
考虑碳排放的公铁两网之间货流转移 被引量:9
17
作者 陈雷 林柏梁 +2 位作者 王龙 温旭红 李建 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期1002-1007,共6页
研究了可以实现低碳交通运输目标的公铁两网之间货流转移问题.综合考虑公铁两网的货流特点,构建了考虑碳排放的公铁两网之间货流转移的0-1规划模型.模型中以碳税描述碳排放成本,以货物运输和转移成本以及在运输和转运过程中产生的碳排... 研究了可以实现低碳交通运输目标的公铁两网之间货流转移问题.综合考虑公铁两网的货流特点,构建了考虑碳排放的公铁两网之间货流转移的0-1规划模型.模型中以碳税描述碳排放成本,以货物运输和转移成本以及在运输和转运过程中产生的碳排放成本最小化为目标函数,考虑节点的转运能力、单股公路货流转移特性以及铁路网弧段的输送能力等为约束条件.最后,详细叙述了求解模型的粒子群算法,并设计了算例进行求解.计算结果表明,货流由公路网转移至铁路网后,不仅提高了铁路网运能的利用率,也使得包含碳排放成本在内的总运输成本降低,验证了所构建模型的合理性. 展开更多
关键词 碳排放 陆路运输系统 货流转移 粒子群算法
在线阅读 下载PDF
云计算环境下基于改进粒子群的任务调度算法 被引量:26
18
作者 封良良 张陶 +2 位作者 贾振红 夏晓燕 覃锡忠 《计算机工程》 CAS CSCD 2013年第5期183-186,191,共5页
现有云计算任务调度算法为追求最短完成时间不能很好地兼顾成本。为此,提出一种基于改进粒子群的任务调度算法。采用间接编码方式对每个子任务占用的资源进行编码,给出解码方式,定义考虑时间和成本的适应度函数,确立粒子位置和速度的更... 现有云计算任务调度算法为追求最短完成时间不能很好地兼顾成本。为此,提出一种基于改进粒子群的任务调度算法。采用间接编码方式对每个子任务占用的资源进行编码,给出解码方式,定义考虑时间和成本的适应度函数,确立粒子位置和速度的更新方法。实验结果表明,在相同的条件设置下,该算法的总任务完成时间和总任务完成成本小于传统粒子群优化算法。 展开更多
关键词 云计算 任务调度 时间成本 双适应度粒子群优化 粒子群优化算法
在线阅读 下载PDF
一种用于机组组合问题的改进双重粒子群算法 被引量:36
19
作者 李整 谭文 秦金磊 《中国电机工程学报》 EI CSCD 北大核心 2012年第25期189-195,26,共7页
为了更经济快速地解决机组组合问题,提出一种改进双重粒子群优化(particle swarm optimization,PSO)算法,包含离散部分和连续部分。离散PSO分时段优化机组的启停状态,在种群更新时加入了临界算子,改进了可行解的判别条件,各机组出力最... 为了更经济快速地解决机组组合问题,提出一种改进双重粒子群优化(particle swarm optimization,PSO)算法,包含离散部分和连续部分。离散PSO分时段优化机组的启停状态,在种群更新时加入了临界算子,改进了可行解的判别条件,各机组出力最低值的和要在一定程度上低于负荷需求值,并考虑机组启停时间的向前继承和向后约束。连续PSO用于启停状态确定过程中和确定后的负荷分配,考虑功率平衡约束、热备用约束和机组的出力上下限约束。求解经济负荷分配时,利用罚函数的方法满足机组的爬坡速率约束,最后得到煤耗最小值。采用2个24时段的算例进行仿真,实验结果表明新算法减少了搜索量,提高了收敛速度,并为机组组合问题提出了新思路。 展开更多
关键词 机组组合 双重粒子群优化 分时段 临界算子 罚函数
在线阅读 下载PDF
直流功率调制抑制交流联络线随机功率波动的研究 被引量:23
20
作者 何剑 孙华东 +1 位作者 郭剑波 卜广全 《中国电机工程学报》 EI CSCD 北大核心 2013年第25期93-98,15,共6页
正常运行时华北、华中两大区互联系统交流联络线上存在随机功率随机波动的现象,限制了联络线的输电能力,并直接威胁着设备的安全运行。减小和抑制大区交流联络线上的随机功率波动是当前调度运行亟待解决的重要问题。提出直流功率调制抑... 正常运行时华北、华中两大区互联系统交流联络线上存在随机功率随机波动的现象,限制了联络线的输电能力,并直接威胁着设备的安全运行。减小和抑制大区交流联络线上的随机功率波动是当前调度运行亟待解决的重要问题。提出直流功率调制抑制交流联络线随机功率波动的方法,通过直流功率调制快速吸收或补偿其所连交流系统的过剩或缺额功率,可减小或抑制交流联络线上的随机功率波动。提出基于功率调节比的直流调制控制器性能指标,并采用改进的粒子群算法求取控制器最优增益,可使直流线路按预先给定的调节比部分或完全承担交流联络线上的随机功率波动。对华北—华中互联系统的仿真研究表明,直流功率调制为减小或抑制特高压交流联络线上的随机功率波动提供了一种有效手段。 展开更多
关键词 联络线 随机功率波动 直流调制 粒子群优化
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部