期刊文献+
共找到673篇文章
< 1 2 34 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method 被引量:1
2
作者 张春宜 宋鲁凯 +2 位作者 费成巍 郝广平 刘令君 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2001-2007,共7页
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr... To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well. 展开更多
关键词 reliability-based design optimization flexible robot manipulator artificial neural network particle swarm optimization advanced extremum response surface method
在线阅读 下载PDF
Discontinuous flying particle swarm optimization algorithm and its application to slope stability analysis 被引量:10
3
作者 李亮 于广明 +1 位作者 陈祖煜 褚雪松 《Journal of Central South University》 SCIE EI CAS 2010年第4期852-856,共5页
A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iterati... A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does. 展开更多
关键词 slope stability limit equilibrium method factor of safety particle swarm optimization.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
4
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
5
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
6
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Broken Rotor Bar Fault Diagnosis of Induction Motors Using a Hybrid Bare-bones Particle Swarm Optimization Algorithm 被引量:10
7
作者 WANG Panpan SHI Liping ZHANG Yong HAN Li 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0011-I0011,13,共1页
在传统定子电流频谱分析中,感应电机转子断条故障特征经常被基波分量淹没而无法准确检测。针对该问题,提出一种基于混合骨干微粒群优化算法的转子断条故障诊断新方法。该方法首先根据电流信号与单位余弦基函数的内积最大准则,利用混合... 在传统定子电流频谱分析中,感应电机转子断条故障特征经常被基波分量淹没而无法准确检测。针对该问题,提出一种基于混合骨干微粒群优化算法的转子断条故障诊断新方法。该方法首先根据电流信号与单位余弦基函数的内积最大准则,利用混合骨干微粒群算法强大的全局搜索能力,准确估计出基波波形参数;然后利用波形参数构造出基波表达式,并将其从原电流信号中剔除,达到突出故障特征的目的。针对微粒群算法在进化后期收敛缓慢的缺点,通过K–均值聚类方式,引入单纯形法对其进行改进,使整个算法的广度探索与深度开发能力得到了有效均衡。最后,对模拟数据和实测信号进行实验,结果验证了所提方法的有效性和优越性。 展开更多
关键词 转子断条故障 混合粒子群优化算法 故障诊断 异步电动机 感应电机 故障发生
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
8
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
A novel particle swarm optimizer without velocity:Simplex-PSO 被引量:5
9
作者 肖宏峰 谭冠政 《Journal of Central South University》 SCIE EI CAS 2010年第2期349-356,共8页
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc... A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104. 展开更多
关键词 Nelder-Mead simplex method particle swarm optimizer high-dimension function optimization convergence analysis
在线阅读 下载PDF
Novel electromagnetism-like mechanism method for multiobjective optimization problems 被引量:1
10
作者 Lixia Han Shujuan Jiang Shaojiang Lan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期182-189,共8页
As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat... As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems. 展开更多
关键词 electromagnetism-like mechanism(EM) method multi-objective optimization problem particle Pareto optimal solutions
在线阅读 下载PDF
Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints 被引量:5
11
作者 Lu Wang Qinghua Xing Yifan Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1277-1290,共14页
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w... To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones. 展开更多
关键词 hypersonic vehicle (HV) reentry trajectory optimization WAYPOINT no-fly zone particle swarm optimization (PSO) Gauss pseudospectral method (GPM).
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
12
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
13
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
Thermo-mechanical fatigue reliability optimization of PBGA solder joints based on ANN-PSO 被引量:2
14
作者 周继承 肖小清 +2 位作者 恩云飞 陈妮 王湘中 《Journal of Central South University of Technology》 EI 2008年第5期689-693,共5页
Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The s... Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size, substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77 dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments. 展开更多
关键词 thermo-meehanical fatigue reliability solder joints plastic ball grid array finite element analysis Taguehi method artificial neural network particle swarm optimization
在线阅读 下载PDF
SMOGN过采样下导水裂隙带高度的MPSO-BP预测模型 被引量:2
15
作者 刘奇 梁智昊 訾建潇 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第11期72-85,共14页
【目的】导水裂隙带高度是顶板(涌)突水、地下水资源流失的重要影响因素之一,是矿井防治水研究的重点。【方法】为了准确地预测煤层顶板导水裂隙带高度,选取开采深度、采高、煤层倾角、工作面斜长、硬岩岩性比例系数和开采方法作为导水... 【目的】导水裂隙带高度是顶板(涌)突水、地下水资源流失的重要影响因素之一,是矿井防治水研究的重点。【方法】为了准确地预测煤层顶板导水裂隙带高度,选取开采深度、采高、煤层倾角、工作面斜长、硬岩岩性比例系数和开采方法作为导水裂隙带高度的主要影响因素,搜集200例导水裂隙带高度实测样本作为模型数据集。首先,采用自适应高斯噪声过采样方法(synthetic minority over-sampling technique for regression with Gaussian noise,SMOGN)对原始数据集进行过采样,结合8折交叉验证,将平均绝对误差(EMA)、均方根误差(ERMS)和决定系数(R2)作为回归模型评价指标,确定最优的BP神经网络结构,然后采用变异粒子群优化算法(mutation particle swarm optimization,MPSO),对神经网络的初始权值和阈值进行优化,最后将优化后的预测模型进行工程现场应用。【结果和结论】结果表明:该数据集下,BP神经网络采用Huber loss和Adam一阶优化算法,训练速度和稳定性均得到提升,最优激活函数为Tanh,最优隐藏层节点数为12。当MPSO种群数量为50时,模型性能最好,经过SMOGN过采样和MPSO超参数优化,最终训练集的EMA为0.163,ERMS为0.216,R2为0.948,验证集的EMA为0.260,ERMS为0.341,R2为0.901。在现场应用中模型预测的相对误差均在9%以下。结果表明结合SMOGN技术和MPSO超参数优化技术,显著提高了模型的稳定性和泛化性能,改善了样本分布特征,提高了样本利用效率和模型预测效果,对导水裂隙带高度模型的训练和预测具有重要的借鉴意义。 展开更多
关键词 煤矿防治水 回归过采样 导水裂隙带 高度预测 变异粒子群算法 模型优化
在线阅读 下载PDF
基于PSO-BP的自平衡法试桩技术平衡点位置研究 被引量:1
16
作者 欧孝夺 梁枫 江杰 《广西大学学报(自然科学版)》 北大核心 2025年第2期231-241,共11页
针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结... 针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结合工程实例来验证本模型的适用性。结果表明,结合粒子群算法优化的PSO-BP神经网络模型,其平衡点位置预测值与真实值的平均相对误差控制在1.93%以内,而BP神经网络的平衡点位置预测值平均相对误差最高可达14.83%;依托来宾市当地以灰岩为持力层的工程试桩数据构建的PSO-BP神经网络平衡点位置预测模型,其仿真预测结果的均方根误差(R_(MSE))为0.294,决定系数R^(2)为0.988,预测值与真实值的相对误差在3.0%以内;在工程实例的对比验证中,PSO-BP神经网络模型在平衡点位置预测上的精度高于规范经验公式法,更接近实际位置,可作为灰岩地区基桩自平衡试桩测试的平衡点位置确定的有效手段。 展开更多
关键词 自平衡法 平衡点 粒子群优化-反向传播神经网络 粒子群算法 灰岩
在线阅读 下载PDF
基于改进粒子群算法的光伏逆变器控制参数辨识 被引量:5
17
作者 罗建 孙越 江丽娟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期124-133,共10页
精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW... 精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW光伏电站为实际参照模型,首先根据实际工作情况将逆变器的工作区间划分为3个阶段,利用数学扰动法分别对3个阶段中的待辨识参数划分灵敏度高低等级,并由此提出不同阶段不同灵敏度参数分步辨识策略;其次,分阶段采集实际光伏电站工作数据,对该数据进行分析处理,获得各待辨识参数的初始取值范围,设计同步辨识参数实验作为参照;最后提出改进的混沌遗传粒子群优化算法(chaos genetic algorithm of particle swarm optimization,CGAPSO)作为辨识算法,分步分工作阶段辨识相关参数,通过对比参数的同步辨识结果,验证所提方法的优越性,并将辨识结果代入仿真模型。结果结果表明,低灵敏度参数的同步辨识结果误差远超过可接受范围,而CGAPSO分步辨识出的相关参数误差皆在1.1%以下,精度远高于同步辨识结果。结论基于改进粒子群算法构建的辨识模型输出数据与实际逆变器工作数据契合度高,可准确反映逆变器实际工作特性。 展开更多
关键词 光伏并网逆变器 逆变器控制策略 参数辨识 数学扰动法 改进粒子群优化算法
在线阅读 下载PDF
考虑碳排放的铁路路基施工机群配置优化 被引量:1
18
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
19
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
人工智能算法在滑坡监测与预测技术中的研究与应用
20
作者 程刚 吴勇飞 +1 位作者 曹德胜 吴亚熹 《地质科技通报》 北大核心 2025年第5期302-316,共15页
为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取... 为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取技术方面,对比分析了尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)和自适应尺度不变特征变换(ASIFT)3种基于图像特征匹配算法的性能,其中ASIFT在匹配数量、精确率和召回率方面具有显著优势,尤其适用于准确性要求较高的复杂环境场景;在光流分析技术方面,探讨了基于Lucas-Kanade稀疏光流法和Horn-Schunck稠密光流法的应用效果,其中Lucas-Kanade稀疏光流法计算效率高,适合实时应用场景,但存在遗漏重要运动信息风险,Horn-Schunck稠密光流法能够提供全面的光流场信息,适用于环境复杂场景,但存在计算复杂度较高的不足,因而难以用于实时处理;在滑坡易发性预测方面,详细介绍了支持向量机(SVM)、决策树(DT)和随机森林(RF)等经典机器学习方法在滑坡预测中的应用优缺点,并重点研究了基于粒子群优化支持向量机(PSO-SVM)的模型性能,该模型通过优化超参数,显著提高了模型的分类准确度、泛化能力和预测精度。此外,通过引入Faster R-CNN模型,利用其先进的卷积神经网络架构,实现了复杂场景下滑坡事件的自动识别与分类,进一步提升了滑坡监测预警的效率和准确率。研究表明,ASIFT局部特征提取的精确率为0.84,Lucas-Kanade稀疏光流法的跟踪误差为0.12,PSO-SVM模型的均方根误差为0.52,Faster R-CNN模型在滑坡图像自动识别与分类方面的置信度可达0.98,综合性能较其他算法显著提升。综上所述,通过引入人工智能算法,结合多学科技术手段,全方面提升了滑坡监测与预测技术的效率和精度,研究成果为滑坡地质灾害防治提供了更有力的技术保障。 展开更多
关键词 人工智能算法 滑坡监测与预测 特征匹配 光流法 粒子群优化支持向量机(PSO-SVM)
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部