In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ...In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-...With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-based directed energy weapon formations,space-based kinetic energy weapon formations,and sea-based carrier-based formations have become the trump card for winning future wars.In a complex confrontation environment,these sophisticated weapon formation systems can precisely strike mobile threat group targets,making them extreme deterrents in joint combat applications.Based on this,first,this paper provides a comprehensive summary of the outstanding advantages,strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare.Second,a detailed analysis of the technological breakthroughs in four key areas,situational awareness,heterogeneous coordination,mixed combat,and intelligent assessment of typical unmanned aerial vehicle(UAV)swarms in joint warfare,is presented.An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control.Then,an indepth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control.Finally,the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.展开更多
Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to ful...Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.展开更多
基金supported by the National Natural Science Foundation of China (72071206,71690233)the Science and Technology Innovation Program of Hunan Province (2020RC4046)。
文摘In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
基金the Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0075,2022JM-395).
文摘With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-based directed energy weapon formations,space-based kinetic energy weapon formations,and sea-based carrier-based formations have become the trump card for winning future wars.In a complex confrontation environment,these sophisticated weapon formation systems can precisely strike mobile threat group targets,making them extreme deterrents in joint combat applications.Based on this,first,this paper provides a comprehensive summary of the outstanding advantages,strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare.Second,a detailed analysis of the technological breakthroughs in four key areas,situational awareness,heterogeneous coordination,mixed combat,and intelligent assessment of typical unmanned aerial vehicle(UAV)swarms in joint warfare,is presented.An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control.Then,an indepth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control.Finally,the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.
基金supported by the National Natural Science Foundation of China(61273210)the National High Technology Research and Development Program of China(863 Program)(2007AA01Z126)
文摘Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.