The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for...This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ...In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.展开更多
为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。...为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。考虑储能设备日折算成本,以微网运行成本最低为目标,采用自适应差分进化算法对模型进行求解,得到不同预测精度与置信概率下的微网储能最优容量合集。通过设置评价指标,选取最合适的储能配置方案,对微网配置储能前后的调度情况作对比。结果表明,基于鲁棒理论配置的电、热、冷这3类储能可有效提升微网在源荷双侧不确定下的电力电量实时平衡能力与运行经济性。展开更多
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
文摘This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by the National Natural Science Foundation of China (72071206,71690233)the Science and Technology Innovation Program of Hunan Province (2020RC4046)。
文摘In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.
文摘为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。考虑储能设备日折算成本,以微网运行成本最低为目标,采用自适应差分进化算法对模型进行求解,得到不同预测精度与置信概率下的微网储能最优容量合集。通过设置评价指标,选取最合适的储能配置方案,对微网配置储能前后的调度情况作对比。结果表明,基于鲁棒理论配置的电、热、冷这3类储能可有效提升微网在源荷双侧不确定下的电力电量实时平衡能力与运行经济性。
文摘粒子群优化(particle swarm optimization,PSO)算法是一种在机器人运动规划、信号处理等领域有广泛应用的优化算法。然而该算法易陷入局部最优解,从而导致早熟问题。出现早熟问题的原因之一是粒子群仅依靠适应度值选择学习范例。为了克服上述问题,提出了一种基于适应度值、改进率和新颖性混合驱动的PSO算法(particle swarm optimization algorithm based on hybrid driven by fitness values,improvement rate,and novelty,FINPSO)。在该算法中,引入的新指标和遗传算法会平衡种群的探索与开发,降低粒子群早熟的可能性。适应度值、改进率和新颖性会作为粒子的评价指标。各指标独立地选择学习范例并保存到不同的档案中。粒子每一次速度更新都要确定各个指标的权重,并从每个档案中选择一个范例学习。该算法采用了遗传算法进行粒子间的信息交流。遗传算法中的交叉互换和突变会给种群带来更多的随机性,提升种群的全局搜索能力。以八个PSO算法变体作为对比算法,两个CEC测试套件作为基准函数进行实验。实验结果表明,FINPSO算法优于已有的PSO算法变体达到最先进水平。