期刊文献+
共找到37,773篇文章
< 1 2 250 >
每页显示 20 50 100
爱尔兰启动R3WIND项目:推动风电叶片循环经济发展
1
作者 燕春晖(摘译) 《石油炼制与化工》 北大核心 2025年第7期194-194,共1页
爱尔兰EireComposites(戈尔韦)公司联合爱尔兰高威大学,在爱尔兰可持续能源管理局(SEAI)资助下,正式启动R3WIND(可修复、可回收、可重复利用)项目。该项目旨在设计风力涡轮机叶片的可持续制造、修复及回收的全套解决方案,通过材料创新... 爱尔兰EireComposites(戈尔韦)公司联合爱尔兰高威大学,在爱尔兰可持续能源管理局(SEAI)资助下,正式启动R3WIND(可修复、可回收、可重复利用)项目。该项目旨在设计风力涡轮机叶片的可持续制造、修复及回收的全套解决方案,通过材料创新与工艺优化,推动风电产业向低碳、循环经济模式转型。 展开更多
关键词 风电叶片 回收 R3wind项目 修复 循环经济 材料创新
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
2
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
3
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
4
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Hybrid input shaping control scheme for reducing vibration of robot based on multi-mode control 被引量:1
5
作者 WEI Yu-lan LI Bing +1 位作者 OU Peng-fei ZHANG Qing-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1649-1660,共12页
The classic multi-mode input shapers(MMISs)are valid to decrease multi-mode residual vibration of manipulators or robots simultaneously.But these input shapers cannot suppress more residual vibration with a quick resp... The classic multi-mode input shapers(MMISs)are valid to decrease multi-mode residual vibration of manipulators or robots simultaneously.But these input shapers cannot suppress more residual vibration with a quick response time when the frequency bandwidth of each mode vibration is very different.The methodologies and various types of multi-mode classic and hybrid input shaping control schemes with positive impulses were introduced in this paper.Six types of two-mode hybrid input shapers with positive impulses of a 3 degree of freedom robot were established.The ability and robustness of these two-mode hybrid input shapers to suppress residual vibration were analyzed by vibration response curve and sensitivity curve via numerical simulation.The response time of the zero vibration-zero vibration and derivative(ZV-ZVD)input shaper is the fastest,but the robustness is the least.The robustness of the zero vibration and derivative-extra insensitive(ZVD-EI)input shaper is the best,while the response time is the longest.According to the frequency bandwidth at each mode and required system response time,the most appropriate multi-mode hybrid input shaper(MMHIS)can be selected in order to improve response time as much as possible under the condition of suppressing more residual vibration. 展开更多
关键词 hybrid control input shaping vibration suppression multi-mode ROBOT
在线阅读 下载PDF
Memetic algorithm for multi-mode resource-constrained project scheduling problems 被引量:1
6
作者 Shixin Liu Di Chen Yifan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期609-617,共9页
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The f... A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30. 展开更多
关键词 project scheduling RESOURCE-CONSTRAINED multi-mode memetic algorithm (MA) local search procedure.
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
7
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Research on Multi-modal In-Vehicle Intelligent Personal Assistant Design
8
作者 WANG Jia-rou TANG Cheng-xin SHUAI Liang-ying 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期136-146,共11页
Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent... Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust. 展开更多
关键词 Intelligent personal assistants multi-modal design User psychology In-vehicle interaction Voice interaction Emotional design
在线阅读 下载PDF
Solar and wind energy potential assessment for Razavi Khorasan Province in Iran
9
作者 HOSSEINI Amirpouya RAMEZANI Faeze MIRHOSSEINI Mojtaba 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2027-2038,共12页
This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibu... This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources. 展开更多
关键词 solar energy wind energy Razavi Khorasan RADIATION Weibull distribution
在线阅读 下载PDF
A Study on Reconstruction of Surface Wind Speed in China Due to Various Climate Variabilities
10
作者 Li Yancong Li Xichen +1 位作者 Sun Yankun Xu Jinhua 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期53-65,共13页
Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ... Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions. 展开更多
关键词 wind speed wind energy correlation method climate variability European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)
在线阅读 下载PDF
风能资源分析与服务平台设计和实现 被引量:3
11
作者 吴焕萍 魏培阳 +2 位作者 张永强 陈刚 向洋 《应用气象学报》 北大核心 2025年第2期245-256,共12页
为提升我国风能资源的合理开发和高效利用,2022年初启动了风能资源分析与服务平台研制。平台采用大数据和气象信息分析技术,融合高分辨率风能资源数据集、气象灾害与台风历史数据、气象预报数据以及基础地理信息等,研制形成了包括风能... 为提升我国风能资源的合理开发和高效利用,2022年初启动了风能资源分析与服务平台研制。平台采用大数据和气象信息分析技术,融合高分辨率风能资源数据集、气象灾害与台风历史数据、气象预报数据以及基础地理信息等,研制形成了包括风能资源查询分析、台风等气象灾害评估与预报预测信息分析、可开发量分析、风机宏观评估、风机自动排布、测风塔管理以及项目管理等业务与服务功能。为满足大数据量的存储和分析需求,设计了基于地理哈希编码的存储结构、按层高分表以及多节点部署等方法,同时创新性使用提取山顶、山脊线、图像识别及分类等算法,结合气象、气候、高程、遥感图像等条件,构建风能资源评估模型并应用在风机自动布机业务。该平台已在国内多家风电企业本地化部署并应用,主要提供风能资源评估、风机布局、近海风能资源分析及风电场选址等服务,结果表明:平台能够识别风能资源丰富区域,并为风电场选址提供可量化的指标数据,为风电场建设从规划、设计到实施提供科学依据。 展开更多
关键词 风能资源 资源评估 大数据组织 宏观规划
在线阅读 下载PDF
基于OU过程和Vine-Copula的多风电场短期风速预测 被引量:3
12
作者 王东风 张博洋 +1 位作者 李青博 黄宇 《太阳能学报》 北大核心 2025年第2期529-538,共10页
针对风电场各风电机组风速间复杂的时空相关性问题,提出一种基于(Ornstein-Uhlenbeck,OU)过程与Vine-Copula建模的多风电场短期风速预测方法。该方法首先根据风速的物理特性,研究风速与湍流强度之间的关系,并根据各季节风速的不同分布... 针对风电场各风电机组风速间复杂的时空相关性问题,提出一种基于(Ornstein-Uhlenbeck,OU)过程与Vine-Copula建模的多风电场短期风速预测方法。该方法首先根据风速的物理特性,研究风速与湍流强度之间的关系,并根据各季节风速的不同分布确立其相应的OU随机过程实现风速模拟;然后,通过构建Vine-Copula模型对风电场内多风电机组风速相关性进行分析;最后,将模拟值归一化处理后代入Vine-Copula的分位数回归模型,实现各风电机组的短期风速预测。应用OU随机过程,可为准确的风速预测奠定基础;通过Vine-Copula建模,可解决风速空间相关性问题。以中国北方某电场风电机组实测数据进行验证,在单步和多步预测中,所提方法的均方根误差RMSE相较于传统方法分别降低了2.68%、9.94%、23.79%、32.10%,提高了风速预测的准确性。 展开更多
关键词 风电场 风电机组 风速 预测 随机过程 Vine-Copula 奥恩斯坦-乌伦贝克过程
在线阅读 下载PDF
大规模风电机群服役质量调控方法研究综述 被引量:1
13
作者 黄晟 凌吉莉 +2 位作者 魏娟 秦国军 黄守道 《电工技术学报》 北大核心 2025年第10期3274-3300,共27页
大力发展风电是构建新型电力系统和保障国家能源安全的重要举措,风电机群高性能服役是实现国家“双碳”战略目标的重要保障。随着单机容量和装机规模持续增大,风况、海况等复杂环境使大规模风电机群服役性能-安全运行能力-发电效益之间... 大力发展风电是构建新型电力系统和保障国家能源安全的重要举措,风电机群高性能服役是实现国家“双碳”战略目标的重要保障。随着单机容量和装机规模持续增大,风况、海况等复杂环境使大规模风电机群服役性能-安全运行能力-发电效益之间的协同优化难度增加,机组安全准确预警与服役质量调控面临严峻挑战。为此,该文主要针对风电机群服役质量动态调控需求,首先,从关键部件层面论述齿轮箱、变桨系统、变流器、发电机和叶片的故障诊断方法,以及齿轮箱和变流器的可靠性分析方法,在此基础上,对各种方法的优缺点进行梳理与比较;然后,就健康度、环境因素对单机服役质量的影响展开分析,从高品质发电、维保优化和尾流控制对机群服役质量影响展开论述;最后,对未来风电机群服役质量调控的发展趋势及潜在的研究热点进行探讨与预测,旨在为提升风电机群的服役性能和促进风电产业的健康可持续发展提供理论借鉴。 展开更多
关键词 风力发电 风电机群 风电机组 服役质量 动态调控
在线阅读 下载PDF
侧风下大跨拱桥变形对高速列车行车平稳性的影响机理 被引量:1
14
作者 李小珍 周彦希 王铭 《西南交通大学学报》 北大核心 2025年第1期1-9,共9页
为探求侧风下的拱桥变形对列车平稳性的作用机理,通过风-车-桥耦合系统得到跨中横、竖向位移,分析不同风速、车速下的列车行车平稳性,量化桥梁变形对风-车-桥系统中列车横、竖向加速度的贡献;结合车体加速度响应的敏感波长及桥梁变形的... 为探求侧风下的拱桥变形对列车平稳性的作用机理,通过风-车-桥耦合系统得到跨中横、竖向位移,分析不同风速、车速下的列车行车平稳性,量化桥梁变形对风-车-桥系统中列车横、竖向加速度的贡献;结合车体加速度响应的敏感波长及桥梁变形的时频特性,分析桥梁变形对行车平稳性影响机理.结果表明:桥梁竖向位移差异较横向位移差异较小,且主要位移由车致桥梁变形产生,最大幅值达到了-9.2mm;在列车及风荷载作用下,桥梁横向及竖向位移较为显著,但其对列车平稳性的影响主要体现在交界墩位置处,约为其余位置响应的4倍;除交界墩区域,桥上列车的行车平稳性主要由风致列车振动及轨道不平顺决定;车体横向及竖向加速度功率谱密度分布与轨道不平顺的波长密切相关,其对应的敏感波长区间均小于120m;车体横向及竖向加速度主要受车辆荷载作用引起的桥梁变形影响,而风荷载引起的桥梁变形主要分布于主跨范围内,波长大于120m,因而未对列车车体加速度产生显著影响. 展开更多
关键词 高速列车 行车平稳性 桥梁变形 风荷载 风-车-桥系统
在线阅读 下载PDF
基于WindNinja模型的峡谷风场与林火蔓延模拟研究
15
作者 王澳 王成虎 +3 位作者 高桂云 王明玉 苏海燕 武凝雨 《林草资源研究》 北大核心 2024年第5期128-137,共10页
聚焦于林火事故频发的高山峡谷区域,特别是地形复杂导致的局部风场多变性对林火蔓延的影响,以3月28日在四川省凉山彝族自治州木里藏族自治县的重大森林火灾为研究案例,运用WindNinja模型模拟峡谷风场,将其输入至FARSITE模型中,并将地表... 聚焦于林火事故频发的高山峡谷区域,特别是地形复杂导致的局部风场多变性对林火蔓延的影响,以3月28日在四川省凉山彝族自治州木里藏族自治县的重大森林火灾为研究案例,运用WindNinja模型模拟峡谷风场,将其输入至FARSITE模型中,并将地表平均风场、峡谷模拟风场分别与FARSITE模型耦合,通过与实际火场范围数据的比较,评估模拟峡谷风场对林火蔓延趋势的影响。模拟结果显示,以轮廓系数(SC)为评价指标,基于WindNinja风场,对3月29日19:00、3月30日19:00、4月1日19:00的林火蔓延模拟精度分别为0.94、0.78和0.44,相较于地表平均风场分别提高了0.12、0.07和0.04。结果表明,WindNinja模拟风场与相关火行为的耦合模拟效果良好,结合WindNinja模拟风场的林火蔓延模型,更准确地考虑了局部风场,模拟结果与实际范围更为一致,和地表平均风场相比具有更高的相似度。 展开更多
关键词 峡谷风场 林火蔓延模拟 windNinja模型 FARSITE模型
在线阅读 下载PDF
考虑极端天气的新型电力系统智能化调度方法 被引量:1
16
作者 张勇 孙雁斌 +6 位作者 颜融 肖亮 范展滔 方必武 黎立丰 杨再敏 蒙文川 《电力科学与技术学报》 北大核心 2025年第1期163-172,共10页
随着以新能源为基础的新型电力系统建设的不断推进,近年来风电、光伏等新能源大规模密集接入系统,这虽然为实现“双碳”目标奠定了坚实的基础,但同时也导致极端天气下新型电力系统调度运行面临的挑战不断增大,其中最易出现的问题是风电... 随着以新能源为基础的新型电力系统建设的不断推进,近年来风电、光伏等新能源大规模密集接入系统,这虽然为实现“双碳”目标奠定了坚实的基础,但同时也导致极端天气下新型电力系统调度运行面临的挑战不断增大,其中最易出现的问题是风电爬坡事件概率大幅提升,不仅会造成系统频率的大幅频繁波动,还会影响电力电量平衡,严重威胁系统安全稳定运行。为此,在统计分析风电爬坡事件的基础上,提出基于深度自回归(deep auto-regressive, DeepAR)模型的风电爬坡事件的预测方法。首先,结合风机功率与风速之间的关系,分析极端天气下风电爬坡事件对电网调度运行的影响,再建立风电爬坡事件物理模型,分析发生风电爬坡事件时的风电功率统计特征;然后,结合深度自回归模型对风电爬坡事件进行功率预测,分析极端天气下的风电出力曲线;最后,结合风电场实测数据验证所提方法的有效性。验证表明:采用所提方法可提前精准定位极端天气环境下风电爬坡事件出现概率,预期将极大改善未来新型电力系统调度运行面临的不确定性。 展开更多
关键词 新型电力系统 风力发电 极端天气 风电爬坡 深度自回归模型
在线阅读 下载PDF
环境风作用下主辅机共塔型空冷系统的数值模拟研究 被引量:2
17
作者 李高潮 赵强强 +7 位作者 万超 范烨 杨凯旋 荆涛 姚兆林 崔元永 肖文博 师进文 《热力发电》 北大核心 2025年第2期135-144,共10页
通过数值模拟研究主辅机共塔间接空冷塔系统在夏季常规工况下不同环境风向、风速对机组流动换热特性的影响。结果表明:环境风速从4 m/s增至16 m/s,迎风扇段压力增加,两侧扇段则压力降低,背风扇段内侧压力升高形成高温区,并在风速大于8m/... 通过数值模拟研究主辅机共塔间接空冷塔系统在夏季常规工况下不同环境风向、风速对机组流动换热特性的影响。结果表明:环境风速从4 m/s增至16 m/s,迎风扇段压力增加,两侧扇段则压力降低,背风扇段内侧压力升高形成高温区,并在风速大于8m/s时高温区会减少,外侧压力降低,迎风背风段的压力变化大于两侧扇段,主机扇段总换热量降低,辅机扇段缓慢增加且受环境风影响较小;在不同环境风向下,当风向角为0°和180°时被遮挡的塔换热量会大幅升高,风向角为45°和135°时,两塔之间的部分扇段被阻挡,被遮挡的塔换热量会相对小幅降低,主机扇段的换热量最大值出现在环境风被完全遮挡的方位,辅机扇段换热量最大值出现在环境风向角90°处,即正对辅机扇段的方位。 展开更多
关键词 空冷系统 主辅机共塔 环境风速 环境风向 数值模拟
在线阅读 下载PDF
风-震耦合作用下钢-预应力混凝土混合塔筒动力响应特征与结构优化 被引量:2
18
作者 邢国华 任泽鹏 +2 位作者 苗鹏勇 葛一鸣 黄娇 《东南大学学报(自然科学版)》 北大核心 2025年第3期716-725,共10页
为探究风力发电塔筒结构在多种荷载作用下的响应特征,选取一座在役4.55 MW钢-预应力混凝土混合塔筒结构,基于Davenport谱生成顺风与侧向扰动脉动风荷载,并考虑典型地震动,通过Abaqus分析不同工况下的动力响应特征,明确结构薄弱部位,并... 为探究风力发电塔筒结构在多种荷载作用下的响应特征,选取一座在役4.55 MW钢-预应力混凝土混合塔筒结构,基于Davenport谱生成顺风与侧向扰动脉动风荷载,并考虑典型地震动,通过Abaqus分析不同工况下的动力响应特征,明确结构薄弱部位,并应用超高性能混凝土(UHPC)对其进行优化。结果表明:脉动风荷载作用下塔筒位移沿高度分布均匀,最大塔顶位移角仅1/635,地震及风-震耦合作用下,塔筒TD2~C1变截面薄弱段的加速度、位移响应骤增致结构破坏;顺风与地震耦合下塔顶位移是单独地震作用下的1.47~1.74倍,考虑侧向扰流后,塔顶位移增大55.8%~86.9%;采用UHPC对塔筒薄弱段进行优化可有效提高结构整体受力性能,避免或延缓结构薄弱区局部失效导致结构整体倒塌。 展开更多
关键词 风力发电塔 钢-预应力混凝土塔筒 脉动风荷载 风-地震耦合 动力响应
在线阅读 下载PDF
狮子洋大桥设计风参数及主梁断面气动优化研究 被引量:1
19
作者 赵林 刘鹏 +2 位作者 徐军 崔冰 崔巍 《桥梁建设》 北大核心 2025年第1期15-23,共9页
狮子洋大桥为主跨2180 m的双层桥面板桁-箱桁组合钢梁悬索桥,该桥中跨桥面高度处设计基准风速高达48.0 m/s。为确保该超大跨度悬索桥运营阶段的抗风安全性,围绕主梁气动外形优化开展多方案抗风性能比选及风致振动性能评价。结合气象站... 狮子洋大桥为主跨2180 m的双层桥面板桁-箱桁组合钢梁悬索桥,该桥中跨桥面高度处设计基准风速高达48.0 m/s。为确保该超大跨度悬索桥运营阶段的抗风安全性,围绕主梁气动外形优化开展多方案抗风性能比选及风致振动性能评价。结合气象站概率统计模型设计风速和混合气候模式设计风速,确定狮子洋大桥桥位处设计风参数;对5种主梁方案开展主梁节段模型风洞试验,进行主梁方案比选和颤振稳定性气动措施优化、不同扭转阻尼比下涡激共振稳定性评价以及台风气候模式下多模态抖振频域计算。结果表明:桥位设计基本风速取34.9 m/s;颤振稳定性方面,对5种主梁方案,上、下层桥面设置通长纵梁能显著改善主梁断面的气动稳定性,增设桥面底部中央稳定板、封闭下层桥面底部和上、下弦杆风嘴可进一步提升抑振效果;涡激共振响应方面,当扭转阻尼比达到0.32%时,扭转涡激共振基本消失;抖振响应方面,台风下主梁抖振响应显著高于《公路桥梁抗风设计规范》(JTG/T 3360-01—2018)规定的百年重现期内设计风速下抖振响应。推荐主梁方案为上、下层桥面系分别采用正交异性钢桥面板和整体式箱梁的双层桥面板桁-箱桁组合钢梁,其主梁断面可满足颤振、涡激共振和抖振的抗风安全设计要求。 展开更多
关键词 悬索桥 双层桥面板桁-箱桁组合钢梁 台风 风致振动 气动选型 风洞试验
在线阅读 下载PDF
风浪联合作用下驳船型海上浮式风机的非线性耦合模型与TMD振动控制研究 被引量:2
20
作者 孔凡 陈玲霜 +2 位作者 郑达成 李书进 董华 《振动工程学报》 北大核心 2025年第1期8-18,共11页
海上浮式风机是捕获深远海风能的重要装置,是风能开发的主要研究方向之一。驳船型风机多采用二维低阶简化动力学模型和非线性最小二乘参数识别方法,建立高阶耦合动力模型能更准确地反映其动力特性。本文关注驳船型海上浮式风机的多体系... 海上浮式风机是捕获深远海风能的重要装置,是风能开发的主要研究方向之一。驳船型风机多采用二维低阶简化动力学模型和非线性最小二乘参数识别方法,建立高阶耦合动力模型能更准确地反映其动力特性。本文关注驳船型海上浮式风机的多体系统,建立风浪联合作用下的16自由度耦合动力学模型,通过数值仿真验证模型的准确性。其中,利用修正的叶素动量理论计算叶片气动荷载,利用线性势流理论计算波浪荷载,采用准静态法计算系泊张力。此外,为减小驳船型海上浮式风机的结构振动,在考虑发电机转矩控制和叶片集体变桨控制的基础上,提出将双向碰撞调谐质量阻尼器置于机舱中,并引入限位装置控制振子行程。随后,通过穷举法和遗传算法进行控制参数优化。仿真分析表明,本文所建模型可准确计算驳船型海上浮式风机的动力响应;双向碰撞调谐质量阻尼器对结构振动有较好的控制效果。 展开更多
关键词 振动控制 驳船型海上浮式风机 非线性耦合模型 双向TMD 风浪联合作用
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部