Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available ...An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.展开更多
As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,whi...As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.展开更多
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金supported by the National High Technology Research and Development Program of China (863 Program)(2008AA12Z305)
文摘An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.
基金supported by the Open Funding Project of National Key Laboratory of Human Factors Engineering(Grant NO.6142222190309)。
文摘As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.