The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提...高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提出了一种依据图片纹理方向,结合预测模式之间的关联性来确定帧内预测模式的快速算法.实验结果表明,本算法与HEVC参考软件HM16.20相比,在BD-Rate损失仅为5.79%的情况下,节省46%以上的编码时间,显著降低了帧内预测模式决策的复杂度,便于在嵌入式系统等硬件资源有限的端侧实现算法落地.展开更多
近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能...近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。展开更多
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.
文摘现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。
文摘高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提出了一种依据图片纹理方向,结合预测模式之间的关联性来确定帧内预测模式的快速算法.实验结果表明,本算法与HEVC参考软件HM16.20相比,在BD-Rate损失仅为5.79%的情况下,节省46%以上的编码时间,显著降低了帧内预测模式决策的复杂度,便于在嵌入式系统等硬件资源有限的端侧实现算法落地.
文摘近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。
基金Supported by National Natural Science Foundation of China(61170147) Major Cooperation Project of Production and College in Fujian Province(2012H61010016) Natural Science Foundation of Fujian Province(2013J01234)