In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the col...In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the collocated devices which employ different communication technologies. Consequently, the communication between these devices will be realized only by using the gateway nodes. This will cause the inefficient use of wireless resources. Therefore, in this paper, a smart service system(SSS) architecture is proposed, which consists of smart service terminal(SST), and smart service network(SSN), to realize the Io T in a general environment with diverse communication networks, devices, and services. The proposed architecture has the following advantages: i) the devices in this architecture cover multiple types of terminals and sensor-actuator devices; ii) the communications network therein is a converged network, and will coordinate multiple kinds of existing and emerging networks. This converged network offers ubiquitous access for various sensors and terminals; iii) the architecture has services and applications covering all smart service areas. It also provides theadaptability to new services and applications. A SSS architecture-based smart campus system was developed and deployed. Evaluation experiments of the proposed smart campus system demonstrate the SSS's advantages over the existing counterparts, and verify the effectiveness of the proposed architecture.展开更多
TISPAN,from a fixed access perspective,proposes Resource and Admission Control Subsystem[0](RACS) as a solution to Quality of Service(QoS) problem for NGN bearer network.In contrast,3GPP has an approach to this from t...TISPAN,from a fixed access perspective,proposes Resource and Admission Control Subsystem[0](RACS) as a solution to Quality of Service(QoS) problem for NGN bearer network.In contrast,3GPP has an approach to this from the perspective of mobile access.In the latest 3GPP R7 draft,integration of Policy Control Function(PCF) with Flow Based Charging(FBC) function of the R6 brought forward policy control and charging.With the development of fixed mobile convergence,the inconsistence in architectures and interfaces of different resource and admission control[0] solutions will have a huge impact on manufacture and network implementation of NGN related equipment.To solve this problem,both 3GPP and TISPAN have been working on the convergence of Gq’/Rx reference points.Harmonized Policy Control and Charging(PCC) proposed by the Next Generation Mobile Network(NGMN) forum,i.e.cooperative resource control architecture for heterogeneous networks,represents an evolutional sign post for resource control technology for heterogeneous network architecture.展开更多
In next generation networks,mobility management will be a critical issue due to dense base station(BS)deployment,for which user and control plane split architecture provides a promising solution.Jointly designing such...In next generation networks,mobility management will be a critical issue due to dense base station(BS)deployment,for which user and control plane split architecture provides a promising solution.Jointly designing such architecture with nonorthogonal transmission brings in more flexibility to further improve system efficiency.This paper proposes a non-orthogonal transmission design for user and control plane split architecture.In this design,user equipments(UEs)will select the BS providing the strongest received signal to associate its data channel,but constantly connect its control channel to the nearest macro-cell BS(MBS).Upon non-orthogonal transmission,an MBS can multiplex data traffics and control signals on the same resource.Stochastic geometry based analysis is carried out to investigate outage probability,which extends its regular definition by jointly considering data and control channels,and then mobility-aware outage rate.Numerical results show that:1)The proposed split architecture alleviates the increase in handover rate for ultra dense networking,compared with conventional architecture.2)Non-orthogonal transmission outperforms traditional orthogonal transmission in the split architecture,because it is capable of accommodating more control channels.3)By carefully adjusting power levels,minimum outage probabilities can be reached for macrocell UEs in the proposed design.展开更多
互联网是促进现代社会经济发展和科技创新的重要信息基础设施;然而,支撑并规范互联网正常运行的关键核心技术——互联网的TCP/IP(Transport Control Protocol/Internet Protocol)体系结构——几十年来几乎保持不变.本文首先从技术自身...互联网是促进现代社会经济发展和科技创新的重要信息基础设施;然而,支撑并规范互联网正常运行的关键核心技术——互联网的TCP/IP(Transport Control Protocol/Internet Protocol)体系结构——几十年来几乎保持不变.本文首先从技术自身弊端、社会发展需求、技术转移周期、科技革命规律四个方面论述了开展互联网体系结构创新的必要性.其次,运用系统科学原理阐明了TCP/IP体系结构弊端的根源.再次,运用系统观念揭示了信息网络的功能本质和网络间的互联本质,发现了信息传递的四个自然属性(对象属性、身份属性、位置属性、手段属性).在此基础上,简要介绍了基于两个本质和四个自然属性开展创新互联网体系结构创新的实例——共生网络.最后,结合共生网络架构展望了部署新型互联网体系结构的总体路径.展开更多
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124, 61427801+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No.13KJB520029)the Jiangsu Province colleges and universities graduate students scientific research and innovation program CXZZ13_0477,NUPTSF(Grant No.NY214033)
文摘In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the collocated devices which employ different communication technologies. Consequently, the communication between these devices will be realized only by using the gateway nodes. This will cause the inefficient use of wireless resources. Therefore, in this paper, a smart service system(SSS) architecture is proposed, which consists of smart service terminal(SST), and smart service network(SSN), to realize the Io T in a general environment with diverse communication networks, devices, and services. The proposed architecture has the following advantages: i) the devices in this architecture cover multiple types of terminals and sensor-actuator devices; ii) the communications network therein is a converged network, and will coordinate multiple kinds of existing and emerging networks. This converged network offers ubiquitous access for various sensors and terminals; iii) the architecture has services and applications covering all smart service areas. It also provides theadaptability to new services and applications. A SSS architecture-based smart campus system was developed and deployed. Evaluation experiments of the proposed smart campus system demonstrate the SSS's advantages over the existing counterparts, and verify the effectiveness of the proposed architecture.
文摘TISPAN,from a fixed access perspective,proposes Resource and Admission Control Subsystem[0](RACS) as a solution to Quality of Service(QoS) problem for NGN bearer network.In contrast,3GPP has an approach to this from the perspective of mobile access.In the latest 3GPP R7 draft,integration of Policy Control Function(PCF) with Flow Based Charging(FBC) function of the R6 brought forward policy control and charging.With the development of fixed mobile convergence,the inconsistence in architectures and interfaces of different resource and admission control[0] solutions will have a huge impact on manufacture and network implementation of NGN related equipment.To solve this problem,both 3GPP and TISPAN have been working on the convergence of Gq’/Rx reference points.Harmonized Policy Control and Charging(PCC) proposed by the Next Generation Mobile Network(NGMN) forum,i.e.cooperative resource control architecture for heterogeneous networks,represents an evolutional sign post for resource control technology for heterogeneous network architecture.
基金supported by the Youth Innovation Foundation of Xiamen(3502Z20206067)the Natural Science Foundation of Fujian Province,China(2021J011219,2022J011276)+3 种基金the National Natural Science Foundation of China(61801412,62201482)the National Key Research and Development Program of China(2021YFB2900801)Beijing Natural Science Foundation(L212004)China University Industry-University-Research Collaborative Innovation Fund(2021FNA05001).
文摘In next generation networks,mobility management will be a critical issue due to dense base station(BS)deployment,for which user and control plane split architecture provides a promising solution.Jointly designing such architecture with nonorthogonal transmission brings in more flexibility to further improve system efficiency.This paper proposes a non-orthogonal transmission design for user and control plane split architecture.In this design,user equipments(UEs)will select the BS providing the strongest received signal to associate its data channel,but constantly connect its control channel to the nearest macro-cell BS(MBS).Upon non-orthogonal transmission,an MBS can multiplex data traffics and control signals on the same resource.Stochastic geometry based analysis is carried out to investigate outage probability,which extends its regular definition by jointly considering data and control channels,and then mobility-aware outage rate.Numerical results show that:1)The proposed split architecture alleviates the increase in handover rate for ultra dense networking,compared with conventional architecture.2)Non-orthogonal transmission outperforms traditional orthogonal transmission in the split architecture,because it is capable of accommodating more control channels.3)By carefully adjusting power levels,minimum outage probabilities can be reached for macrocell UEs in the proposed design.
文摘互联网是促进现代社会经济发展和科技创新的重要信息基础设施;然而,支撑并规范互联网正常运行的关键核心技术——互联网的TCP/IP(Transport Control Protocol/Internet Protocol)体系结构——几十年来几乎保持不变.本文首先从技术自身弊端、社会发展需求、技术转移周期、科技革命规律四个方面论述了开展互联网体系结构创新的必要性.其次,运用系统科学原理阐明了TCP/IP体系结构弊端的根源.再次,运用系统观念揭示了信息网络的功能本质和网络间的互联本质,发现了信息传递的四个自然属性(对象属性、身份属性、位置属性、手段属性).在此基础上,简要介绍了基于两个本质和四个自然属性开展创新互联网体系结构创新的实例——共生网络.最后,结合共生网络架构展望了部署新型互联网体系结构的总体路径.