期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
1
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(ABC) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
在线阅读 下载PDF
基于标签算法的异车型混合集送多属性车辆路径问题研究 被引量:2
2
作者 田宇 伍炜勤 吴其震 《管理工程学报》 CSSCI 北大核心 2015年第3期191-198,共8页
文章对异车型混合集送的辆路径问题(Vehicle Routing Problem with heterogeneous fleet,backhaul and mixed-load,VRPHBM)进行研究,提出了一种基于多属性标签的蚁群系统算法(Multi-Label based Ant Colony System简称MLACS)。该算法利... 文章对异车型混合集送的辆路径问题(Vehicle Routing Problem with heterogeneous fleet,backhaul and mixed-load,VRPHBM)进行研究,提出了一种基于多属性标签的蚁群系统算法(Multi-Label based Ant Colony System简称MLACS)。该算法利用面向对象理念,分别对客户、车辆及其行驶路径构建多属性标签,再通过蚁群算法的搜索规则对客户和车辆标签进行匹配,从而得出满意的车辆行驶路径。通过Solomon标准及其扩展算例和实际案例的验证表明,MLACS具有快速、灵活和稳定等特点,能够很好地解决VRPTW、VRPHBM以及多限制条件的实际应用问题。与本文列出的研究同类型问题文献的其他几种算法相比,MLACS算法在运算时间以及计算结果上明显具有优势,是求解该类问题的有效算法。 展开更多
关键词 车辆路径问题 多属性车辆路径问题 标签蚁群算法 异车型混合集送问题
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部