期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
集成模糊LSA与MIL的图像分类算法 被引量:4
1
作者 李大湘 彭进业 李展 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第10期1796-1802,1809,共8页
针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首... 针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首先利用K-Means方法对训练包中所有的示例进行聚类,建立"视觉词汇表";然后根据"视觉字"与示例之间的距离定义模糊隶属度函数,建立模糊"词-文档"矩阵,再采用LSA方法获得多示例包(图像)的模糊潜在语义模型,并通过该模型将每个多示例包转化成单个样本;采用半监督的TSVM训练分类器,以利用未标注图像来提高分类精度.基于Corel图像库的对比实验结果表明,与传统的LSA方法相比,模糊LSA的分类准确率提高了5.6%,且性能优于其他分类方法. 展开更多
关键词 多示例学习 场景图像分类 模糊潜在语义分析
在线阅读 下载PDF
基于记忆策略的元解释学习
2
作者 王榕 田聪 +2 位作者 孙军 于斌 段振华 《软件学报》 北大核心 2025年第8期3477-3493,共17页
元解释学习(meta-interpretive learning,MIL)是一种归纳逻辑程序设计(inductive logic programming,ILP)方法,旨在从一组实例、元规则和其他背景知识中学习一个程序.MIL采用深度优先和失败驱动策略在程序空间中搜索适当的子句以生成程... 元解释学习(meta-interpretive learning,MIL)是一种归纳逻辑程序设计(inductive logic programming,ILP)方法,旨在从一组实例、元规则和其他背景知识中学习一个程序.MIL采用深度优先和失败驱动策略在程序空间中搜索适当的子句以生成程序.事实上,这种机制不可避免地引发了对相同目标重复证明的问题.提出一种剪枝策略,该策略利用Prolog内置的数据库机制来存储未能达成的目标及其对应的错误信息,从而有效避免冗余的证明过程.此后,这些累积的错误信息能够作为指导,帮助MIL系统在未来的学习过程中进行优化和调整.证明剪枝算法的正确性,并在理论上计算程序空间的缩减比例.将所提出的方法应用于两个现有的MIL系统Metagol和Metagol_(AI),从而产生了两个新的MIL系统MetagolF和Metagol_(AI_F).在4个不同任务上的实证结果表明,所提出的策略可以显著减少学习相同程序的时间消耗. 展开更多
关键词 元解释学习 冗余证明 记忆策略 剪枝算法 归纳逻辑程序设计
在线阅读 下载PDF
基于QPSO-MIL算法的图像标注 被引量:2
3
作者 李大湘 彭进业 卜起荣 《计算机科学》 CSCD 北大核心 2010年第6期278-282,296,共6页
在多数现有图像标注图像库中,关键字只标注在图像级而非区域级,使有监督学习方法在图像标注中难以应用。基于量子粒子群优化算法(quantum-behaved particle swarm optimization,QPSO)提出了一种新的多示例学习(multi-instance learning,... 在多数现有图像标注图像库中,关键字只标注在图像级而非区域级,使有监督学习方法在图像标注中难以应用。基于量子粒子群优化算法(quantum-behaved particle swarm optimization,QPSO)提出了一种新的多示例学习(multi-instance learning,MIL)算法——QPSO-MIL算法,在多示例学习的框架下将基于区域的图像标注问题描述成一个有监督的学习问题。该方法将图像当作包,分割的区域当作包中的示例,利用多样性密度(DD)函数,定义了粒子的适应度向量。在示例空间,利用QPSO方法在各个维度上同时搜索DD函数的全局极大值点,作为关键字的概念点,然后根据Bayesian后验概率最大准则(MAP)对图像进行标注。通过ECCV2002图像库的实验结果表明,QPSO-MIL算法是有效的。 展开更多
关键词 多示例学习 图像标注 量子粒子群优化
在线阅读 下载PDF
利用局部-全局时间依赖的弱监督视频异常检测
4
作者 宋鹏程 郭立君 张荣 《计算机应用》 北大核心 2025年第1期240-246,共7页
弱监督视频异常检测(WS-VAD)对智能安防领域具有重要意义。而目前WS-VAD任务面临以下问题:现有方法更关注对视频片段本身的判别,而忽略了片段之间的局部和全局时间依赖性;在损失函数设置上忽略了异常事件的时序结构;异常视频中存在大量... 弱监督视频异常检测(WS-VAD)对智能安防领域具有重要意义。而目前WS-VAD任务面临以下问题:现有方法更关注对视频片段本身的判别,而忽略了片段之间的局部和全局时间依赖性;在损失函数设置上忽略了异常事件的时序结构;异常视频中存在大量正常片段噪声,干扰训练的收敛。因此,提出一种基于局部-全局时间依赖(LGTD)网络的弱监督视频异常检测方法。该方法中,LGTD网络利用多尺度时序特征融合(MTFF)模块捕获不同时间跨度内片段的局部时间相关性;同时,利用多头自注意力(MHSA)模块整合视频内所有片段的信息,从而理解整个视频序列的时间相关性;之后,利用通道注意力挤压-激励(SE)模块优化片段内部的特征权重,从而更准确地捕捉视频片段的时空特征,并显著提升检测性能。此外,进一步改进现有损失函数,即引入互补的K-maxmin包内损失和Top-K包外损失,以提高从异常视频中选取异常片段进行训练优化的概率。实验结果表明,所提方法在UCF-Crime和ShanghaiTech数据集上的平均曲线下面积(AUC)分别达到了83.18%和95.41%,与协同正态学习(CNL)方法相比,分别提高了0.08和7.21个百分点。可见,所提方法能有效提升检测性能。 展开更多
关键词 视频异常检测 弱监督学习 多实例学习 多尺度特征融合 多头自注意力机制
在线阅读 下载PDF
基于AFSVM-MIL算法的图像标注
5
作者 邓剑勋 熊忠阳 曾代敏 《计算机应用研究》 CSCD 北大核心 2011年第10期3917-3919,3924,共4页
通常情况下关键字只标注在图像上,而多示例(MIL)检索的需要将关键字下沉到区域。针对这个问题,在模糊支持向量机算法(FSVM)的基础上提出了一种改进的自适应模糊支持向量机多示例学习算法(AFS-VM-MIL算法),在多示例学习的框架下把区域级... 通常情况下关键字只标注在图像上,而多示例(MIL)检索的需要将关键字下沉到区域。针对这个问题,在模糊支持向量机算法(FSVM)的基础上提出了一种改进的自适应模糊支持向量机多示例学习算法(AFS-VM-MIL算法),在多示例学习的框架下把区域级的图像标注变成了一种有监督的学习。该方法利用AFSVM-MIL对训练集进行分类,结合包之间的相似度进行广义集合运算,可以有效地将关键字进行下沉,从而达到减少人工标注工作量的目的。实验结果表明,该方法有效且性能优于其他方法。 展开更多
关键词 图像标注 多示例学习 自适应模糊支持向量机 广义集合运算
在线阅读 下载PDF
用FSVM-MIL算法实现图像检索
6
作者 李大湘 彭进业 卜起荣 《光电工程》 CAS CSCD 北大核心 2009年第9期98-103,共6页
针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法—FSVM-MIL算法。在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包。FSVM-MIL算法将图像当作包,分割后的区... 针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法—FSVM-MIL算法。在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包。FSVM-MIL算法将图像当作包,分割后的区域当作包中的示例,若图像包含有感兴趣对象,则对应的包标为正,否则标为负,因为正包中的示例不全是正的,概念标号存在模糊性,本文利用多样性密度方法寻找概念点,根据noisy-or概率模型定义了模糊隶属度函数,为正包中的示例赋予不同的模糊因子,用FSVM求解多示例学习问题。在SIVAL图像集进行对比实验,结果表明FSVM-MIL算法是有效的且性能不亚于其它同类方法。 展开更多
关键词 模糊支持向量机 基于对象的图像检索 多示例学习
在线阅读 下载PDF
全局感知与稀疏特征关联图像级弱监督病理图像分割
7
作者 张印辉 张金凯 +4 位作者 何自芬 刘珈岑 吴琳 李振辉 陈光晨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3672-3682,共11页
弱监督语义分割方法可以节省大量的人工标注成本,在病理全切片图像(WSI)的分析中有着广泛应用。针对弱监督多实例学习(MIL)方法在病理图像分析中存在的像素实例相互独立缺乏依赖关系,分割结果局部不一致和图像级标签监督信息不充分的问... 弱监督语义分割方法可以节省大量的人工标注成本,在病理全切片图像(WSI)的分析中有着广泛应用。针对弱监督多实例学习(MIL)方法在病理图像分析中存在的像素实例相互独立缺乏依赖关系,分割结果局部不一致和图像级标签监督信息不充分的问题,该文提出一种全局感知与稀疏特征关联图像级弱监督的端到端多实例学习方法(DASMob-MIL)。首先,为克服像素实例之间的独立性,使用局部感知网络提取特征以建立局部像素依赖,并级联交叉注意力模块构建全局信息感知分支(GIPB)以建立全局像素依赖关系。其次,引入像素自适应细化模块(PAR),通过多尺度邻域局部稀疏特征之间的相似性构建亲和核,解决了弱监督语义分割结果局部不一致的问题。最后,设计深度关联监督模块(DAS),通过对多阶段特征图生成的分割图进行加权融合,并使用权重因子关联损失函数以优化训练过程,以降低弱监督图像级标签监督信息不充分的影响。DASMob-MIL模型在自建的结直肠癌数据集YN-CRC和公共弱监督组织病理学图像数据集LUAD-HistoSeg-BC上与其他模型相比展示出了先进的分割性能,模型权重仅为14 MB,在YN-CRC数据集上F1 Score达到了89.5%,比先进的多层伪监督(MLPS)模型提高了3%。实验结果表明,DASMob-MIL仅使用图像级标签实现了像素级的分割,有效改善了弱监督组织病理学图像的分割性能。 展开更多
关键词 弱监督语义分割 组织病理学图像 多实例学习 全局感知 稀疏特征
在线阅读 下载PDF
基于多示例学习图卷积网络的隐写者检测
8
作者 钟圣华 张智 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期771-789,共19页
隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写... 隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写者检测算法,将隐写者检测形式化为多示例学习(Multiple-instance learning, MIL)任务.本文中设计的共性增强图卷积网络(Graph convolutional network, GCN)和注意力图读出模块能够自适应地突出示例包中正示例的模式特征,构建有区分度的示例包表征并进行隐写者检测.实验表明,本文设计的模型能够对抗多种批量隐写术和与之对应的策略. 展开更多
关键词 图像隐写者检测 图卷积网络 多示例学习 示例包表征
在线阅读 下载PDF
基于聚类的多实例学习全视野数字切片分类
9
作者 钟海勤 赵程 +1 位作者 雷柏英 汪天富 《中国生物医学工程学报》 CSCD 北大核心 2024年第6期652-661,共10页
病理图像是检验癌症的金标准,对病理图像,尤其是全视野数字切片(WSI),进行快速、准确地分类有助于辅助医生对患者进行个性化治疗和预后评估。近年来,多实例学习(MIL)在WSI分类中发挥着越来越重要的作用。然而,由于WSI的数量有限,且阳性... 病理图像是检验癌症的金标准,对病理图像,尤其是全视野数字切片(WSI),进行快速、准确地分类有助于辅助医生对患者进行个性化治疗和预后评估。近年来,多实例学习(MIL)在WSI分类中发挥着越来越重要的作用。然而,由于WSI的数量有限,且阳性区域占比较低,现有的基于注意力机制的MIL方法可能会导致过拟合,从而影响分类的性能。为了解决这个问题,本研究提出一种新的基于聚类的MIL分类方法。具体地说,为了增加包的数量,让网络关注更多的阳性实例,将每个包划分为多个伪包;然后,为了解决在伪包划分过程中容易出现一个伪包全是阴性实例,导致产生噪声的现象,提出一种新的基于聚类的伪包划分方法;最后,为了获得更加精准的分类结果,将学习到的伪包级特征进行二次学习,得到最终的包级特征,并实现最终的WSI分类。在Camelyon16和TCGA-Lung数据集上进行实验,分别有399张WSI和1038张WSI,分类准确率分别为90.69%和86.54%,F1-评分分别为90.20%和86.52%。实验结果,表明所提出的方法可有效应用于WSI分类中。 展开更多
关键词 全视野数字切片 多实例学习 分类 聚类 伪包
在线阅读 下载PDF
在线加权多示例学习实时目标跟踪 被引量:29
10
作者 陈东成 朱明 +2 位作者 高文 孙宏海 杨文波 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1661-1667,共7页
由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最... 由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最大值的方法从弱分类器集中选择K个最优的弱分类器,给每个弱分类器赋不同的权值,生成一个强分类器;最后,在新的一帧中抽取目标和背景样本,用生成的强分类器对待分类的目标和背景进行分类;分类结果映射成概率值,概率最大样本的位置就是所要跟踪目标的位置。对不同视频序列的测试结果表明,该跟踪算法的跟踪正确率达93%,目标大小为43pixel×36pixel时处理帧率约为25frame/s。与原始多示例学习跟踪算法相比,本算法的实时性提高了67%。 展开更多
关键词 多示例学习 目标跟踪 分类器 权值
在线阅读 下载PDF
基于局部加权的Citation-kNN算法 被引量:9
11
作者 黄剑华 丁建睿 +1 位作者 刘家锋 张英涛 《电子与信息学报》 EI CSCD 北大核心 2013年第3期627-632,共6页
Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况。为解决该问题,该文提出局部加权的Citation-kNN算法,综合考虑样本的分布情况,提出基于样本距... Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况。为解决该问题,该文提出局部加权的Citation-kNN算法,综合考虑样本的分布情况,提出基于样本距离加权、基于样本离散度加权的方法,并对各种组合情况进行了实验。在标准数据集MUSK和乳腺超声图像数据库上的实验结果表明,该文提出的方法与Citation-kNN相比,性能有明显提高,并具有良好的适应性。 展开更多
关键词 图像识别 多示例学习 Citation-kNN 样本分布 局部加权
在线阅读 下载PDF
基于稀疏表达的多示例学习目标追踪算法 被引量:5
12
作者 苏巧平 刘原 +1 位作者 卜英乔 黄河 《计算机工程》 CAS CSCD 2013年第3期213-217,222,共6页
追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码... 追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码获得一个多示例学习的分类器,分类的结果与粒子滤波框架相结合,估计目标在整个视频序列中的运动状态。实验结果表明,该算法稳定性较好,与增量学习追踪算法、范式学习追踪算法和多示例学习追踪算法相比,其中心位置误差率减少30%以上。 展开更多
关键词 目标追踪 多示例学习 稀疏表达 分类器 粒子滤波 数据字典
在线阅读 下载PDF
基于多示例学习和随机蕨丛检测的在线目标跟踪 被引量:6
13
作者 罗艳 项俊 +1 位作者 严明君 侯建华 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1605-1611,共7页
基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移... 基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移。该文提出一种能够有效克服目标漂移的跟踪算法,采用检测器和跟踪器相结合的框架,利用中值流算法作为跟踪器,提高跟踪点的可靠性;级联若干个随机蕨弱分类器构成强分类器作为检测器;用在线多示例学习方法更新检测器,提高检测精度;最后将检测器、跟踪器的结果相融合得到最终的目标位置。实验结果表明,与其它方法相比,该方法对目标漂移有更强的鲁棒性。 展开更多
关键词 目标跟踪 中值流(MF) 随机蕨丛 在线多示例学习(mil)
在线阅读 下载PDF
基于EMD的融合特征快速多示例人脸识别算法 被引量:8
14
作者 邓剑勋 熊忠阳 曾代敏 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2012年第2期99-104,共6页
在基于五官模版技术的人脸识别中,因光照、角度及缺少整体性考虑等情况,易产生异常示例,影响了算法精度。而适合多示例检索的EMD距离寻优路径较长,导致在人脸识别中应用受限。为此提出一种基于EMD距离的快速融合特征多示例人脸识别算法(... 在基于五官模版技术的人脸识别中,因光照、角度及缺少整体性考虑等情况,易产生异常示例,影响了算法精度。而适合多示例检索的EMD距离寻优路径较长,导致在人脸识别中应用受限。为此提出一种基于EMD距离的快速融合特征多示例人脸识别算法(IIFEMD-MIL)。针对异常点的问题,通过引入结合整体特征的融合多示例技术以及距离阀值,从而减少异常示例的产生并对超过阈值的示例予以平滑处理;针对寻优路径长的问题,将人脸五官之三结合整体示例为模版构建四示例的一一匹配,并进一步提出了融合快速EMD-MIL框架,缩短了寻优遍历路径。在ORL和MIT图像集上进行的比对实验表明,该算法执行效率和分类准确性优于其他同类算法。 展开更多
关键词 多示例学习(mil) 人脸识别 推土机距离(EMD) 距离阈值 融合特征
在线阅读 下载PDF
基于HOG与多实例在线学习的目标跟踪算法 被引量:7
15
作者 刘哲 陈恳 郑紫微 《计算机工程》 CAS CSCD 北大核心 2015年第1期158-163,共6页
为实现在局部遮挡、光线变化等复杂背景下的目标跟踪,提出一种基于梯度方向直方图(HOG)与多实例在线学习的目标跟踪算法。利用已标定目标图像的HOG特征空间,结合局部二值模式(LBP)描述方法获取特征向量,构建初始随机蕨检测算子,采用随... 为实现在局部遮挡、光线变化等复杂背景下的目标跟踪,提出一种基于梯度方向直方图(HOG)与多实例在线学习的目标跟踪算法。利用已标定目标图像的HOG特征空间,结合局部二值模式(LBP)描述方法获取特征向量,构建初始随机蕨检测算子,采用随机多尺度采样方法跟踪每一帧的目标位置和尺寸,并基于多实例在线学习框架,通过检测到的目标样本以及附近的背景样本在线更新检测算子。将该算法与Online Boosting Tracker,MILTracker等在线学习目标跟踪算法在多个标准视频序列中进行比较,实验结果表明,该算法在局部遮挡和光照变化的环境下具有较好的跟踪稳定性,但在抗目标旋转方面有待优化。 展开更多
关键词 随机蕨 梯度方向直方图 局部二值模式 多实例学习 在线学习 目标检测 目标跟踪
在线阅读 下载PDF
基于场景语义的图像检索新方法 被引量:3
16
作者 李大湘 彭进业 卜起荣 《系统工程与电子技术》 EI CSCD 北大核心 2010年第5期1060-1064,共5页
针对图像的场景语义检索问题,提出一种基于多示例学习(multi-instance learning,MIL)的新方法。首先,该方法将图像当作多示例包,再根据图像的颜色复杂度,设计了自适应JESG图像分割方法,对图像进行自动分割,并提取每个分割区域的颜色-纹... 针对图像的场景语义检索问题,提出一种基于多示例学习(multi-instance learning,MIL)的新方法。首先,该方法将图像当作多示例包,再根据图像的颜色复杂度,设计了自适应JESG图像分割方法,对图像进行自动分割,并提取每个分割区域的颜色-纹理特征,当作包中的示例,将图像检索问题转化成多示例学习问题;然后,利用改进的推土机距离(earth mover distance,EMD)来度量不同多示例包(图像)之间的整体相似度,设计了一种新的惰性MIL算法,用于场景图像检索。基于COREL图像库的对比实验结果表明,设计的示例构造方法与MIL算法都是有效的,且检索精度优于其他同类方法。 展开更多
关键词 图像检索 图像分割 多示例学习 场景语义
在线阅读 下载PDF
图像检索中结合文本信息的多示例原型选择及主动学习策略 被引量:3
17
作者 李净 郭洪禹 《计算机应用》 CSCD 北大核心 2012年第10期2899-2903,共5页
针对基于区域的图像检索系统检索精度不高的问题,提出结合文本信息的多示例原型选择算法和反馈标注机制。在示例原型选择时,首先使用文本信息进行正例拓展,然后通过估计负示例分布进行最初示例选择,最后通过示例更新和分类器学习的交替... 针对基于区域的图像检索系统检索精度不高的问题,提出结合文本信息的多示例原型选择算法和反馈标注机制。在示例原型选择时,首先使用文本信息进行正例拓展,然后通过估计负示例分布进行最初示例选择,最后通过示例更新和分类器学习的交替优化获得真的示例原型。相关反馈采用了多策略相结合的主动学习机制,通过信息值控制主动学习策略的自动切换,使系统能够自动选择当前最适合的主动学习策略。实验结果表明,该方法有效且性能优于其他方法。 展开更多
关键词 多示例学习 文本信息 示例原型 主动学习 相关反馈
在线阅读 下载PDF
基于K均值聚类和多示例学习的图像检索方法 被引量:4
18
作者 温超 耿国华 李展 《计算机应用》 CSCD 北大核心 2011年第6期1546-1548,1568,共4页
针对基于对象的图像检索问题,利用K均值(K-means)聚类,提出了一种新的基于多示例学习(MIL)框架的图像检索算法KP-MIL。该算法在正包和负包组成示例集合聚类,获取潜在正示例代表和包结构特性数据,然后利用径向基核分别度量两者的相似性,... 针对基于对象的图像检索问题,利用K均值(K-means)聚类,提出了一种新的基于多示例学习(MIL)框架的图像检索算法KP-MIL。该算法在正包和负包组成示例集合聚类,获取潜在正示例代表和包结构特性数据,然后利用径向基核分别度量两者的相似性,最后利用alpha因子均衡两者相似性对核函数结果的影响。在标准对象图像检索集SIGVAL上进行实验,实验结果表明,该方法是有效的且性能优于其他同类方法。 展开更多
关键词 图像检索 多示例学习 K均值聚类 径向基核 alpha因子
在线阅读 下载PDF
基于视觉字典的在线多示例目标跟踪 被引量:2
19
作者 吴京辉 唐林波 +2 位作者 赵保军 邓宸伟 李嘉桐 《系统工程与电子技术》 EI CSCD 北大核心 2015年第2期428-435,共8页
在线多示例目标跟踪算法无法判别目标丢失以及无法适应目标尺度的变化。提出了一种基于视觉字典的在线多示例目标跟踪算法。算法将视觉字典和多示例跟踪分别作为检测器和跟踪器,利用互反馈技术提高跟踪性能。跟踪器完成目标的跟踪并为... 在线多示例目标跟踪算法无法判别目标丢失以及无法适应目标尺度的变化。提出了一种基于视觉字典的在线多示例目标跟踪算法。算法将视觉字典和多示例跟踪分别作为检测器和跟踪器,利用互反馈技术提高跟踪性能。跟踪器完成目标的跟踪并为视觉字典的构建和更新提供训练样本;检测器则对跟踪器的结果(候选样本)进行判定,目标丢失时,暂停跟踪并重新检测目标,目标未丢失时,利用Ransac算法获得目标的尺度变换系数并在新尺度下更新跟踪器。为了提高目标丢失判别的准确性,提出了一种局部随机抽样的直方图相似性度量技术,采用局部划分思想和Noisy-NR模型计算候选样本与训练样本特征直方图的相似性,减少了传统直方图匹配由于受目标局部遮挡影响造成的误判。实验结果表明,该算法能够适应目标的尺度变化,检测目标的丢失,提高了跟踪稳定性。 展开更多
关键词 在线多示例目标跟踪 视觉字典 尺度自适应 目标丢失判别
在线阅读 下载PDF
基于示例选择的目标跟踪改进算法 被引量:2
20
作者 李想 汪荣贵 +2 位作者 杨娟 蒋守欢 梁启香 《计算机工程》 CAS CSCD 北大核心 2015年第1期150-157,共8页
多示例学习是一种处理包分类问题的新型学习模式,传统基于多示例学习的目标跟踪算法在自适应获取正包时受到无益或有害示例的干扰,不能很好地提取目标的鉴别性特征。为此,设计基于核密度估计的示例选择方法,剔除训练集中的无益示例或有... 多示例学习是一种处理包分类问题的新型学习模式,传统基于多示例学习的目标跟踪算法在自适应获取正包时受到无益或有害示例的干扰,不能很好地提取目标的鉴别性特征。为此,设计基于核密度估计的示例选择方法,剔除训练集中的无益示例或有害示例,提高多示例学习算法的有效性,并在此基础上提出一种基于示例选择的目标跟踪改进算法,针对负示例占多数的情况建立核密度估计函数来精简正包中的示例,使用精简后的样本数据进行训练学习,最终实现对目标的实时跟踪。实验结果表明,该算法在光照变化、目标部分遮挡及形体变化等情形下都具有较好的稳健性。 展开更多
关键词 多示例学习 有害示例 核密度估计 示例选择 稳健性 目标跟踪
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部