In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ra...In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of ...Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.展开更多
目的 探讨经颅直流电刺激(transcranial direct current stimulation,tDCS)结合抗阻训练对大学生完成引体向上成绩的影响作用,并从神经肌肉活动控制角度探讨训练干预产生作用的潜在机制。方法 25名男性大学生志愿者随机分为tDCS结合抗...目的 探讨经颅直流电刺激(transcranial direct current stimulation,tDCS)结合抗阻训练对大学生完成引体向上成绩的影响作用,并从神经肌肉活动控制角度探讨训练干预产生作用的潜在机制。方法 25名男性大学生志愿者随机分为tDCS结合抗阻训练组(试验组)和单纯抗阻训练组(对照组),12名对照组受试者接受持续8周、每周3次、每次4组、每组12次动作重复的高位下拉力量训练干预,13名试验组受试者在对照组所采用的训练基础上,在每次训练前进行20 min的tDCS干预。在训练干预前后分别对受试者进行高位下拉静态自主最大收缩力(maximal voluntary contraction,MVC)、80%一次最大重复(one repetition maximum,1RM)负荷高位下拉最大重复次数和常规引体向上动作测试。在引体向上动作测试过程中记录上肢主要用力肌肉的表面肌电信号。结果 训练干预后,试验组和对照组引体向上完成次数分别提高了1.74倍和1.42倍,两组受试者MVC和80%1RM负荷高位下拉最大重复次数也都显著提升,但两组受试者上述指标差异皆无统计学意义。训练后两组受试者主动肌肱桡肌、三角肌后束、胸大肌的激活水平皆显著下降。此外,试验组受试者在训练后拮抗肌肱三头肌的共激活水平由0.50±0.22显著下降到0.37±0.09,而对照组在干预前后无显著变化。结论 持续8周的tDCS结合抗阻训练和单纯抗阻训练显著提升大学生引体向上成绩,可能与两种训练皆可以显著提升主动的肌肉收缩能力有关。tDCS结合抗阻训练可以更有效地降低引体向上动作过程中肱三头肌的共激活水平,提高肘关节肌肉的收缩效率。展开更多
目的:探究阳极经颅直流电刺激(a-tDCS)结合抗阻训练对健康成年人下肢力量和无氧功率的训练效果。方法:选取30名有丰富抗阻训练经验的(19.70±1.47)岁健康成年人,并随机分配到复合训练组(a-tDCS+抗阻训练,n=15)和单一训练组(n=15);2...目的:探究阳极经颅直流电刺激(a-tDCS)结合抗阻训练对健康成年人下肢力量和无氧功率的训练效果。方法:选取30名有丰富抗阻训练经验的(19.70±1.47)岁健康成年人,并随机分配到复合训练组(a-tDCS+抗阻训练,n=15)和单一训练组(n=15);2组受试者每周均进行2次颈后杠铃深蹲训练,复合训练组需要在每次深蹲训练前进行20 min a-tDCS(电流2mA)干预,训练时长为5周;采用双因素重复测量方差分析(干预方式×测试阶段),探讨上述自变量对受试者的下肢最大力量和无氧功率指标的影响,包括峰值功率(PP)、平均功率(AP)以及功率衰减(PD)。结果:5周训练干预后,2组受试者后测的1RM深蹲成绩相较前测均有显著提高(p<0.05),且复合训练组受试者1RM深蹲成绩的提高效果显著于单一训练组〔复合训练组(19.20±7.38)kg对比单一训练组(12.27±8.66)kg,p<0.05〕;复合训练组和单一训练组的PP、AP、PD在干预前后的差异均不显著(p>0.05)。结论:a-tDCS结合抗阻训练对下肢肌力的增强作用显著于单一抗阻训练,a-tDCS可以作为健康成年人增强下肢力量的一种辅助训练方法。展开更多
基金Project(51975167)supported by the National Natural Science Foundation of China。
文摘In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
文摘Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.
文摘目的:探究阳极经颅直流电刺激(a-tDCS)结合抗阻训练对健康成年人下肢力量和无氧功率的训练效果。方法:选取30名有丰富抗阻训练经验的(19.70±1.47)岁健康成年人,并随机分配到复合训练组(a-tDCS+抗阻训练,n=15)和单一训练组(n=15);2组受试者每周均进行2次颈后杠铃深蹲训练,复合训练组需要在每次深蹲训练前进行20 min a-tDCS(电流2mA)干预,训练时长为5周;采用双因素重复测量方差分析(干预方式×测试阶段),探讨上述自变量对受试者的下肢最大力量和无氧功率指标的影响,包括峰值功率(PP)、平均功率(AP)以及功率衰减(PD)。结果:5周训练干预后,2组受试者后测的1RM深蹲成绩相较前测均有显著提高(p<0.05),且复合训练组受试者1RM深蹲成绩的提高效果显著于单一训练组〔复合训练组(19.20±7.38)kg对比单一训练组(12.27±8.66)kg,p<0.05〕;复合训练组和单一训练组的PP、AP、PD在干预前后的差异均不显著(p>0.05)。结论:a-tDCS结合抗阻训练对下肢肌力的增强作用显著于单一抗阻训练,a-tDCS可以作为健康成年人增强下肢力量的一种辅助训练方法。