期刊文献+
共找到845篇文章
< 1 2 43 >
每页显示 20 50 100
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
1
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
基于RGB与深度图像融合的生菜表型特征估算方法 被引量:3
2
作者 陆声链 李沂杨 +3 位作者 李帼 贾小泽 鞠青青 钱婷婷 《农业机械学报》 北大核心 2025年第1期84-91,101,共9页
采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并... 采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并通过双模态回归网络对生菜表型特征进行估算。本文改进的分割模型的骨干网络由Xception替换为MobileViTv2,以增强其全局感知能力和性能;在回归网络中,提出了卷积双模态特征融合模块CMMCM,用于估算生菜的表型特征。在包含4个生菜品种的公开数据集上的实验结果表明,本文方法可对鲜质量、干质量、冠幅、叶面积和株高共5种生菜表型特征进行估算,决定系数分别达到0.9222、0.9314、0.8620、0.9359和0.8875。相较于未添加CMMCM和SE模块的RGB和深度图的表型参数估计基准ResNet-10(双模态),本文改进的模型决定系数分别提高2.54%、2.54%、1.48%、2.99%和4.88%,单幅图像检测耗时为44.8 ms,说明该方法对于双模态图像融合的生菜表型特征无损提取具有较高的准确性和实时性。 展开更多
关键词 生菜 表型估算 模态融合 分割模型 RGB图像 深度图像
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法 被引量:1
3
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割 被引量:1
4
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
煤矿井下采掘工作场景非均质图像去雾与增强技术 被引量:1
5
作者 张旭辉 解彦彬 +6 位作者 杨文娟 张超 万继成 董征 王彦群 蒋杰 李龙 《煤田地质与勘探》 北大核心 2025年第1期245-256,共12页
【目的】针对煤矿井下采掘作业中采煤和除尘活动引发尘雾分布不均及复杂光照条件,导致视频图像模糊不清、信息量和细节丢失等问题,提出了一种井下采掘工作场景非均质图像去雾与增强技术。【方法】首先对雾图进行区域分割,计算不同亮度... 【目的】针对煤矿井下采掘作业中采煤和除尘活动引发尘雾分布不均及复杂光照条件,导致视频图像模糊不清、信息量和细节丢失等问题,提出了一种井下采掘工作场景非均质图像去雾与增强技术。【方法】首先对雾图进行区域分割,计算不同亮度区域的全局暗通道环境光均值,并与通过自适应伽马矫正和多尺度高斯滤波得到的局部亮通道环境光进行加权融合,以获得精确的环境光估计。为了保证图像细节的同时实现自然去雾效果,采用多尺度融合矫正技术处理透射图,并利用联合双边滤波得到精细化的透射图,结合大气散射模型,实现尘雾图像的清晰化。针对去雾后的图像整体较暗且对比度不足,进一步采用修正白平衡处理,将图像转换到HSV空间,提出自适应饱和度矫正和改进对比度增强算法,并结合拉普拉斯锐化提升图像的细节和对比度。【结果和结论】通过选取DCP、MRP、OSFD、MF-LIME、CEEF 5种算法处理真实典型的场景图像,并采用多项指标与本研究算法处理结果进行对比实验,结果表明:与新颖优秀算法的最优指标对比,提出算法相比CEEF在平均梯度的平均提升约为两倍,提升了图像的清晰度;相比MRP的信息熵平均降低约为1%,保留了更多图像信息;相比OSFD的标准差平均提升约为6%,改善了图像对比度;相比CEEF的FADE平均降低约为23%,能更有效地降低尘雾密度且运行速度较快,表现出更优越的性能。提出的算法能够有效提高煤矿井下采掘工作场景中模糊图像的视觉效果和图像质量,增强了其在工程应用中的实用性。 展开更多
关键词 区域分割 暗亮通道融合 对比度增强 修正白平衡 自适应饱和度矫正 采掘作业
在线阅读 下载PDF
基于深度学习的轻量级实时图像分割方法研究 被引量:1
6
作者 李建锋 熊明强 +3 位作者 陈园琼 王宗达 向涛 孙培玮 《通信学报》 北大核心 2025年第2期176-190,共15页
针对深度学习在各领域应用中因模型复杂度提升而引发的计算与存储负担,尤其在图像分割任务中面临的算法复杂性、实时响应不足及高内存占用问题,提出了一种轻量级且高效的分割网络架构——多尺度叠加融合网络(MSFNet)。MSFNet设计了一个... 针对深度学习在各领域应用中因模型复杂度提升而引发的计算与存储负担,尤其在图像分割任务中面临的算法复杂性、实时响应不足及高内存占用问题,提出了一种轻量级且高效的分割网络架构——多尺度叠加融合网络(MSFNet)。MSFNet设计了一个双分支多尺度边界融合模块,该模块通过融合不同尺度的特征信息与边界细节,有效提升了图像分割精度,同时显著减少了模型参数量。实验结果表明,MSFNet在3个公开数据集上表现优异,其模型参数量仅为0.6×10^(6),在RTX 3070 GPU上处理大小为800像素×800像素的图像仅需12 ms,显著提升了分割任务的执行效率和资源利用率。因此,该模型特别适合应用于资源有限的边缘设备或移动设备中,为实时图像分割应用提供了有力的技术支撑。 展开更多
关键词 图像分割 轻量级实时网络 双分支多尺度边界融合模块
在线阅读 下载PDF
结合注意力特征融合的路面裂缝检测 被引量:2
7
作者 谢永华 厉涛 柏勇 《计算机工程与设计》 北大核心 2025年第1期307-313,共7页
为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重... 为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重,突出有用信息,解决裂缝漏检问题;在编码器部分,改进浅层特征与深层特征的选取方式,提升特征融合效果和检测精度。实验结果表明,该网络在各项指标上均优于其它对比网络,具有较高的检测精度。 展开更多
关键词 裂缝检测 深度学习 语义分割 卷积网络 注意力机制 特征融合 特征提取
在线阅读 下载PDF
BEV感知学习在自动驾驶中的应用综述 被引量:3
8
作者 黄德启 黄海峰 +1 位作者 黄德意 刘振航 《计算机工程与应用》 北大核心 2025年第6期1-21,共21页
自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究... 自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究意义、空间部署、准备工作、算法发展及评价指标五个方面总结了BEV感知模型具有良好发展潜力的原因。BEV感知模型从框架角度概括为四个系列:Lift-Splat-Lss系列、IPM逆透视转换、MLP视图转换及Transformer视图转换;从输入数据概括为两类:第一类是纯图像特征的输入包括单目摄像头输入和多摄像头输入,第二类在融合数据输入中不仅是简单的点云数据和图像特征的数据融合,还包括了以点云数据为引导或监督的知识蒸馏融合和以引导切片方式去划分高度段的融合。概述了多目标追踪、地图分割、车道线检测及3D目标检测四种自动驾驶任务在BEV感知模型当中的应用,并总结了目前BEV感知学习四个系列框架的缺点。 展开更多
关键词 BEV感知学习 视图转换 多模态数据融合 多目标追踪 地图分割 车道线检测及3D目标检测
在线阅读 下载PDF
基于半监督多尺度一致性学习的医学影像分割
9
作者 李萍 张雪英 +2 位作者 王夙喆 李凤莲 张华 《计算机工程》 北大核心 2025年第10期295-307,共13页
深度监督学习在医学图像分割领域已经取得了显著成就,但它在很大程度上依赖于大量标签数据,难以获取高质量标签的医学图像数据。基于此,提出一种半监督多尺度一致性网络(SSMC-Net)的医学图像病灶分割方法。该方法构建的网络采用联合训... 深度监督学习在医学图像分割领域已经取得了显著成就,但它在很大程度上依赖于大量标签数据,难以获取高质量标签的医学图像数据。基于此,提出一种半监督多尺度一致性网络(SSMC-Net)的医学图像病灶分割方法。该方法构建的网络采用联合训练架构,同时从标签数据和无标签数据中学习。此外,为了减少下采样和上采样过程中细节信息的丢失,设计了多尺度减法(MS)模块来捕获更广泛的差分特征,包括减法单元(SU)和多特征融合单元(MFFU)。SU负责提取多尺度编码器中的差分信息,MFFU有选择性地融合其中最相关的重要特征,为解码器提供更精确的特征表示。最后,重新设计了损失函数,在有监督部分综合计算各分辨率下的像素级输出的损失值,在无监督部分提出多尺度联合一致性损失,并设计距离函数来减少不可靠样本的影响。在CPD、ATLAS和ACDC数据集上的实验结果表明,相比现有半监督分割方法,该方法在50%标签占比下的Dice相似系数(DSC)、F2值等关键评价指标更优。 展开更多
关键词 病灶分割 半监督学习 一致性正则化 多尺度减法 多特征融合
在线阅读 下载PDF
基于混合深度卷积的遥感影像语义分割
10
作者 田智慧 郎杰 魏海涛 《计算机应用与软件》 北大核心 2025年第8期253-258,290,共7页
高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Ne... 高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Net。该模型在编码器中采用分阶段的并行网络结构,通过对不同层级中子分支动态的分配权重来实现编码器的动态网络结构,同时引入一种通道和空间注意力模块来改进编码器到解码器的特征融合效果,提升语义分割效果。在ISPRS validation数据集上的测试集精度比DeepLabv3+提高3.44百分点。实验结果表明,该网络在高分辨率遥感影像分割问题中取得了良好的分割效果。 展开更多
关键词 语义分割 遥感影像 深度学习 特征融合
在线阅读 下载PDF
基于双分支多尺度特征融合的跨模态语义分割算法
11
作者 陈广秋 任天蓉 +1 位作者 段锦 黄丹丹 《电子测量与仪器学报》 北大核心 2025年第5期144-154,共11页
针对单模态可见光RGB图像语义分割在夜晚或光线变化环境下存在分割效果差、目标边缘分割不清晰等问题,以及现有的跨模态语义分割在获取全局上下文信息和融合跨模态特征时还存在大量不足。为此提出了一种基于双分支多尺度特征融合的跨模... 针对单模态可见光RGB图像语义分割在夜晚或光线变化环境下存在分割效果差、目标边缘分割不清晰等问题,以及现有的跨模态语义分割在获取全局上下文信息和融合跨模态特征时还存在大量不足。为此提出了一种基于双分支多尺度特征融合的跨模态语义分割算法。采用Segformer作为主干网络提取特征,捕获长距离依赖关系,采用特征增强模块提升浅层特征图的对比度和边缘信息的判别性,利用有效注意力增强模块和跨模态特征融合模块,对不同模态特征图像素点间的关系进行建模,聚合互补信息,发挥跨模态特征优势。最后,采用轻量级的All-MLP解码器重建图像,预测分割结果。相比较于已有主流算法,该算法在MFNet城市街景数据集上的各项评估指标均为最优,平均准确率(mAcc)和平均交并比(mIoU)分别达到了76.9%和59.8%。实验结果表明,该算法在处理复杂场景时,能够有效改善目标边缘轮廓分割不清晰的问题,提高图像的分割精度。 展开更多
关键词 多模态深度学习 语义分割 特征融合 跨模态 Segformer
在线阅读 下载PDF
基于形状流和多尺度特征融合的腺体分割
12
作者 林嘉雯 陈苏苏 +2 位作者 林智明 李笠 翁谦 《中国生物医学工程学报》 北大核心 2025年第1期52-65,共14页
睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘... 睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘、出现反光点以及腺体密集区域,分割结果仍不理想。考虑到红外睑板腺图像成像与腺体分布的特点,提出基于形状流和多尺度特征融合的腺体分割模型SS-UNet,引入空洞卷积模块以增强模型的特征提取能力,设计形状流辅助分支以充分学习腺体的形状信息,采用多尺度特征融合模块以获得粗细各异腺体的特征表示。为验证模型的有效性,使用由福州大学附属省立医院眼科收集的包含203幅红外睑板腺图像的全标注数据集在同等实验环境下与其他先进分割模型开展对比实验,并进行模块消融分析,同时展示了可视化结果。实验表明,SS-UNet的Acc、Dice、IoU等指标分别达到了94.62%、80.94%和68.17%,相较于基准网络U-Net分别提升了0.36%、1.41%和1.95%。研究表明,SS-UNet能够充分运用腺体的形状与尺度等信息,解决腺体粘连、漏检等错误分割问题,有效提高分割精度,为辅助临床诊断提供客观依据。 展开更多
关键词 睑板腺功能障碍 腺体分割 空洞卷积 形状流 多尺度特征融合
在线阅读 下载PDF
坐标增强与多源采样的脑肿瘤图像分割
13
作者 蒋占军 李洋 +1 位作者 廉敬 苗新法 《计算机应用》 北大核心 2025年第3期996-1002,共7页
针对脑肿瘤图像分割模型对肿瘤区域关注度不够及易丢失空间上下文信息,导致对肿瘤区域分割效果不佳的问题,提出一种融合坐标增强学习机制(CEL)与多源采样的TransUNet脑肿瘤分割网络。首先,提出一种CEL,结合ResNetv2作为模型的浅层特征... 针对脑肿瘤图像分割模型对肿瘤区域关注度不够及易丢失空间上下文信息,导致对肿瘤区域分割效果不佳的问题,提出一种融合坐标增强学习机制(CEL)与多源采样的TransUNet脑肿瘤分割网络。首先,提出一种CEL,结合ResNetv2作为模型的浅层特征提取网络,增加对脑肿瘤区域的关注度;其次,设计深层混合采样特征提取器,并利用可变形注意力与自注意力机制对脑肿瘤的全局与局部信息进行多源采样;最后,在编码器与解码器之间设计交互层级融合(ILF)模块,从而在实现深层与浅层特征信息交互的同时减少参数的计算量。在BraTS2018和BraTS2019数据集上的实验结果表明:相较于基准TransUNet,所提模型的平均相似性系数(mDice)、平均交并比(mIoU)、平均精度均值(mAP)和平均召回率(mRecall)分别提高4.84、7.21、3.83和3.15个百分点,模型大小降低了16.9 MB。 展开更多
关键词 图像分割 多模态信息 坐标增强学习机制 混合采样 交互层级融合模块
在线阅读 下载PDF
基于多尺度特征融合与重构卷积的肝肿瘤图像分割方法
14
作者 马金林 酒志青 +4 位作者 马自萍 夏明格 张凯 程叶霞 马瑞士 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期94-108,共15页
针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核... 针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核重构模块,使编码器保留更多的细节信息,并使解码器能更有效地恢复信息,以提升肝肿瘤图像特征的表达能力。然后,为丰富全局上下文信息的传递,设计了三分支空间金字塔池化模块来优化瓶颈结构的信息传递,打破单一路径的限制。接着,设计了多尺度特征融合模块来优化编码器信息的复用机制,增强模型对全局上下文信息的建模能力,并提升其在提取不同尺度肝肿瘤图像特征时的效能。最后,在LiTS2017和3DIRCADb数据集上对该文方法的性能进行了测试。实验结果表明:在LiTS2017数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.56%和95.25%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.71%和81.58%;在3DIRCADb数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.63%和95.39%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.62%和81.63%。 展开更多
关键词 肝肿瘤图像分割 卷积核重构 空间金字塔池化 多尺度特征融合
在线阅读 下载PDF
基于相机与激光雷达融合的番茄果实三维定位研究
15
作者 邹荣 李金炎 +2 位作者 王权 白圣贺 沐森林 《农机化研究》 北大核心 2025年第10期1-10,18,共11页
为满足复杂环境中番茄采摘机器人果实三维定位需求,克服番茄三维定位中光照变化对相机影响、三维点云定位的资源消耗和速度问题,提出了一种基于相机与激光雷达融合的番茄果实三维定位方法。首先,对传感器采集的数据进行预处理,基于改进... 为满足复杂环境中番茄采摘机器人果实三维定位需求,克服番茄三维定位中光照变化对相机影响、三维点云定位的资源消耗和速度问题,提出了一种基于相机与激光雷达融合的番茄果实三维定位方法。首先,对传感器采集的数据进行预处理,基于改进的YOLOv5s模型对番茄图像进行感兴趣区域(Region of Interest,RoI)提取,通过传感器联合标定将RoI转换为带有点云信息的截锥体区域提议;其次,对区域内点云进行反射率分析,分割出番茄果实点云,通过SOM K-means聚类算法对分割出来的果实点云进行聚类,进而对果实重叠的点云进行个体分割;最后,使用多模态融合算法将二维的图像检测中心与番茄点云质心相关联。引入EIoU Loss对YOLOv5s网格的损失函数进行优化,改进的模型在测试集上的识别准确率为99.65%,与YOLOv5s和Faster RCNN相比,识别准确率分别提高了3.7个百分点、5.9个百分点。对随机选取的52株番茄果树样本进行定位,试验结果表明:改进后算法的定位准确率为95.48%,相比于双目立体视觉检测识别准确率提高了2.48个百分点,定位误差小于4.5 mm。机械臂采摘试验表明,改进后算法满足番茄采摘机器人视觉定位要求。 展开更多
关键词 番茄定位 多传感器融合 YOLOv5s算法 SOM K-means聚类算法 点云分割
在线阅读 下载PDF
基于前后景分割的图像情感分析
16
作者 高玮军 刘书君 孙子博 《计算机工程与应用》 北大核心 2025年第1期206-213,共8页
图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择... 图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择、特征融合和情感识别分类。现有的大部分图像情感分析工作以图像整体为单位进行输入,未能充分发挥图像中局部特征的情感作用。如果不能对图像的全局特征和局部特征作出区分,当图像出现清晰度不高、背景噪声较多等问题时,图像的全局特征就会变得较为敏感,特征提取和识别工作将会受到严重干扰,对情感分析的准确性产生一定影响。针对目前图像情感分析存在的不足,提出一种基于前后景分割的图像情感分析方法。该方法以YOLOv5为框架,引入ConvNeXt模块和AFF模块,分别进行特征提取和注意力融合。实验结果表明,与目前比较流行的几种图像情感分析方法相比,该方法对于包含更多情感信息和语义信息的场景更为适用,性能也有所提升。 展开更多
关键词 图像情感分析 前后景分割 特征融合 YOLOv5 局部特征 全局特征
在线阅读 下载PDF
基于视觉注意力机制的三维平面恢复方法
17
作者 沈凤仙 韩笑 张邦梅 《计算机应用与软件》 北大核心 2025年第10期259-265,共7页
当前三维平面恢复方法中存在无法对场景中小物体目标平面进行有效恢复的难题。为了解决这个难题,提出一种基于视觉注意力机制的三维平面恢复方法。具体地,对低尺度特征进行下采样并与高尺度特征进行融合。利用自适应多头注意力机制对融... 当前三维平面恢复方法中存在无法对场景中小物体目标平面进行有效恢复的难题。为了解决这个难题,提出一种基于视觉注意力机制的三维平面恢复方法。具体地,对低尺度特征进行下采样并与高尺度特征进行融合。利用自适应多头注意力机制对融合特征进行编码。定义平面分割模块和平面参数估计模块,并分别使用卷积神经网络和视觉注意力机制对特征进行解码。大量实验结果表明,该方法能有效地恢复小物体目标平面表示,并且与当前最先进的三维平面恢复方法相比具有显著的竞争力。 展开更多
关键词 三维平面恢复 注意力机制 平面分割 特征融合
在线阅读 下载PDF
全局感知与多尺度特征融合的城市道路语义分割
18
作者 邬开俊 张治瑞 +1 位作者 汪滢 安立伟 《光学精密工程》 北大核心 2025年第14期2262-2277,共16页
语义分割在自动驾驶与智能交通工程应用中发挥着不可替代的作用。针对语义分割现存分割边界模糊、物体间相互遮挡及物体多尺度差异造成的分割精度不足问题,提出全局感知与多尺度特征融合的城市道路语义分割网络。为改善分割边界模糊的问... 语义分割在自动驾驶与智能交通工程应用中发挥着不可替代的作用。针对语义分割现存分割边界模糊、物体间相互遮挡及物体多尺度差异造成的分割精度不足问题,提出全局感知与多尺度特征融合的城市道路语义分割网络。为改善分割边界模糊的问题,设计全局感知模块,通过联合空间和通道信息增强特征之间的交互以感知全局信息;物体间相互遮挡情况下模型往往需要提升被遮挡区域的敏感度,为此提出多尺度特征融合模块以兼顾大小物体的分割精度;采用综合性的多约束特征平滑损失评估模型,进一步平滑特征,优化目标以求最优解。经实验验证,本文方法于Cityscapes数据集上在不同分辨率情况下mIoU值分别提升0.5%,0.9%,1.7%,在ADE20K数据集上mIoU值提升2.1%。相比于现有语义分割网络模型,本文方法分割效果有进一步提升。 展开更多
关键词 深度学习 图像处理 语义分割 特征融合 损失函数
在线阅读 下载PDF
基于双注意力机制和多尺度融合的点云分类与分割网络
19
作者 李维刚 邵佳乐 田志强 《计算机应用》 北大核心 2025年第9期3003-3010,共8页
现有的网络难以有效学习点云局部的几何形状信息,存在无法有效关注重要特征结构和融合不充分等问题。因此,提出一种基于双注意力机制(DAM)和多尺度融合的点云分类与分割网络。首先,在数据特征提取阶段利用几何自适应卷积(GAC)动态地调... 现有的网络难以有效学习点云局部的几何形状信息,存在无法有效关注重要特征结构和融合不充分等问题。因此,提出一种基于双注意力机制(DAM)和多尺度融合的点云分类与分割网络。首先,在数据特征提取阶段利用几何自适应卷积(GAC)动态地调整卷积核的几何位置和权重,使它能够动态适应点云数据的局部几何结构,从而更有效地捕捉局部特征;其次,为了进一步提升特征表达能力,引入DAM自动学习并调整特征通道和空间信息的权重,从而增强关键点的特征表示;最后,连接不同尺度的特征信息以进行有效融合,从而增强特征学习效果,使得最终的特征表示更加丰富,以提高网络的分类分割精度。在ModelNet40、ShapeNet和S3DIS数据集上的实验结果表明,所提网络与PointNet++和DGCNN(Dynamic Graph Convolutional Neural Network)相比,总体分类精度(OA)和平均交并比(mIoU)更好,有效提升了点云分类与分割的性能。 展开更多
关键词 点云 分类分割 深度学习 注意力机制 特征融合
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
20
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部