The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaini...Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.展开更多
Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel ...Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.展开更多
Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only th...Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.展开更多
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
文摘Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.
基金Projects(51778544,51978589,51908472) supported by the National Natural Science Foundation of ChinaProject(2682021CG014) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.
文摘Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.