A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ...To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.展开更多
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
文摘To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.
基金Supported by National Natural Science Foundation ot China(60572100, 60673122), Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (60711130233), Science Foundation of Shenzhen City (CXQ2008019, 200706), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2008[890]).
文摘近年来,随着羊只养殖向大规模和精细化的方向发展,羊场对智能化管理的需求日益增加。因此,精准的个体识别和行为监测变得尤为重要,对多目标跟踪(Multiple object tracking, MOT)算法的准确性提出了更高要求。然而,现有的MOT算法在目标遮挡和动态场景下的性能仍不理想。本文提出两种跟踪线索:深度调制交并比(Depth modulated intersection over union, DIoU)和轨迹方向建模(Tracklet direction modeling, TDM),旨在补充交并比(Intersection over union, IoU)线索,提高多目标跟踪的精准度和鲁棒性。DIoU线索通过引入目标的深度信息改进了传统的IoU计算方法。TDM聚焦于目标的运动趋势,预测其未来的移动方向。本文将DIoU和TDM跟踪线索集成到BoT-SORT算法中,形成改进的多目标跟踪算法。在两个私有数据集上,改进算法相比基线方法,MOTA(Multiple object tracking accuracy)指标分别提高1.6、1.7个百分点,IDF1(Identification F1 score)指标分别提高1.9、1.0个百分点。结果显示,改进算法在复杂场景中的跟踪连续性和准确性显著提升。