This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and t...This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation. The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining ca- tenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique. Examples of different TLs configurations, including a 220 kV single-circuit hori- zontally configured TLs, a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs, are illustrated to verify the validity of this methodology. A more complicatal configurations, including a 500 kV double-circuit TLs and two 220 kV single-circuit horizontally configured TLs, are also calculated. Conclusions were drawn from the simulation: 1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span. 2) Coordinate trans- formation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations, which makes it possible to deal with complex engineering problems. 3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value. 4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs, for instance, the height of TLs, the length of span and the intersection angle of multiple circuits, influence the strength and the distribution of hybrid electric field. The influence regularities sum- marized in this paper can be referred by future TL designs to meet the electromagnetic environmental protection regulations.展开更多
The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's...The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.展开更多
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca...In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introdu...This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introduced,then the method using correlation analysis in fault location is given.Transmission line model is established with EMTP-ATP.Basing on the model,some kinds of fault are simulated.The feasibility of this algorithm is proved based on simulation results.By comparing with the classical wavelet analysis,this paper gave the advantages of this algorithm in two cases:noise influence suppression and accuracy of near distance fault location.Experiment is established to simulate transmission line grounding fault.The experiment result showed the correlation algorithm's validity.All the analysis result indicated that the correlation algorithm have a high precision.展开更多
A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed i...A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed immediately to extract the edges of the transmission line conductor and transmission line insulators.The icing thickness can be gained by comparing the edges of the iced transmission line and the uniced one.Two icing image edge extraction methods are described in detail,that is,a method based on the combination of the wavelet transform and the floating threshold method and a method based on the combination of the optimal threshold method and the mathematical morphology transform.The icing images from the artificial climatic chamber and transmission lines are used to test the methods above.The results show that the method based on the wavelet transform and the floating threshold method does well in the extraction of relatively smooth edges,such as glaze icing on conductor and icing on the insulator;meanwhile,the method based on the optimal threshold method and the mathematical morphology transform does well in the edge extraction of icing on the conductor,especially the opaque rime icing on the conductor with complicated edges.展开更多
Audible noise from high voltage transmission lines’ corona discharge has become one of the decisive factors affecting design of high voltage transmission lines, thus it is very important to study the spatial propagat...Audible noise from high voltage transmission lines’ corona discharge has become one of the decisive factors affecting design of high voltage transmission lines, thus it is very important to study the spatial propagation characteristics of audible noise for its accurate pre- diction. A calculation model for the propagation of audible noise is presented in this paper, which is based on the basic equation of the sound wave and can involve the influences of the atmosphere absorption and ground effects. The effects of different ground impedances and the atmospheric attenuation on the distribution of sound pressure level are discussed in this paper. The results show that the atmospheric absorp- tion may increase the attenuation of the audible noise, and the ground surface affects both the amplitude and phase of the sound. The spatial distribution fluctuates considering the ground effects. The atmospheric attenuation and the ground effect are closely related to the frequency of the noise. In the frequency range of the audible noise, the influence of atmospheric attenuation on the spatial propagation characteristics is more obvious in high frequency while ground has significant influences in low frequency.展开更多
Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for co...Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.展开更多
A simulation system for power grid with concentrated large-scale wind farm integration is established based on the electro-magnetic transient model of wind turbine equipped with doubly-fed induction generator (DFIG),w...A simulation system for power grid with concentrated large-scale wind farm integration is established based on the electro-magnetic transient model of wind turbine equipped with doubly-fed induction generator (DFIG),which is built by real-time digital simulator (RTDS).Using the hardware communication interface of RTDS,a closed-loop testing experiment is accomplished to study the impacts of large-scale wind farms on the existing relay protection devices for wind farm outgoing transmission line.This paper points out problems existing in current relay protection devices as follows:fault phase selector can select unwanted phase due to the changes of fault features caused by special network connection of wind farms;blocking condition for distance protections needs to be re-examined due to the weak power-feed characteristics of wind farms;and power frequency parameter based relay protection devices cannot accurately operate due to the special transient voltage and current characteristics of wind farms during fault period.Results lay the foundation for improving the performances of the existing relay protection device and developing new principle relay protection.展开更多
To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute ...To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.展开更多
In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave th...In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.展开更多
Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved sh...Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved shielding angle is proposed for evaluating the lightning performance in different terrains.The digital elevation model(DEM) is used to obtain the micro-topography data,such as the slope gradient,slope aspect,etc.The following results are obtained by analyzing the influence of topography factors on the improved shielding angle:(1) improved shielding angle non-linearly increases with the increase of the slope gradient and the slope aspect,(2) improved shielding angle is more sensitive to the slope gradient than to the slope aspect,(3) the improved shielding angle in the mountain terrains is much greater than the designed shielding angle.This may be the reason why the designed shielding angle is limited into the rational range,while the shielding faults occur frequently.展开更多
The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharg...The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.展开更多
An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of succe...An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.展开更多
基金Project supported by Scientific Research Foundation of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (2007DA1051271 2204), Natural Science Foundation of Chongqing Municipality (cstc201 ljjA20009).
文摘This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation. The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining ca- tenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique. Examples of different TLs configurations, including a 220 kV single-circuit hori- zontally configured TLs, a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs, are illustrated to verify the validity of this methodology. A more complicatal configurations, including a 500 kV double-circuit TLs and two 220 kV single-circuit horizontally configured TLs, are also calculated. Conclusions were drawn from the simulation: 1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span. 2) Coordinate trans- formation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations, which makes it possible to deal with complex engineering problems. 3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value. 4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs, for instance, the height of TLs, the length of span and the intersection angle of multiple circuits, influence the strength and the distribution of hybrid electric field. The influence regularities sum- marized in this paper can be referred by future TL designs to meet the electromagnetic environmental protection regulations.
基金Project(50575165) supported by the National Natural Science Foundation of ChinaProjects(2006AA04Z202, 2005AA2006-1) supported by the National High-Tech Research and Development Program of China+1 种基金Project(20813) supported by the Natural Science Foundation of Hubei Province, ChinaProject(20045006071-28) supported by the Youth Chenguang Project of Science and Technology of Wuhan City, China
文摘The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.
基金Project supported by China Postdoctoral Science Foundation ( 10000072311030 ), Scienee technology Research Foundation of Shandong University of China {10000080398125).
基金Project(51308193)supported by the National Natural Science Foundation of ChinaProject(SGKJ[2007]116)supported by the Science and Technology Program of State Grid Corporation of China
文摘In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
基金Project Supported by Chongqing Science and Technology Committee(2005AA600)
文摘This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introduced,then the method using correlation analysis in fault location is given.Transmission line model is established with EMTP-ATP.Basing on the model,some kinds of fault are simulated.The feasibility of this algorithm is proved based on simulation results.By comparing with the classical wavelet analysis,this paper gave the advantages of this algorithm in two cases:noise influence suppression and accuracy of near distance fault location.Experiment is established to simulate transmission line grounding fault.The experiment result showed the correlation algorithm's validity.All the analysis result indicated that the correlation algorithm have a high precision.
基金Project Supported by Nature Science Foundation Project of CQ CSTC (2008BB615).
文摘A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed immediately to extract the edges of the transmission line conductor and transmission line insulators.The icing thickness can be gained by comparing the edges of the iced transmission line and the uniced one.Two icing image edge extraction methods are described in detail,that is,a method based on the combination of the wavelet transform and the floating threshold method and a method based on the combination of the optimal threshold method and the mathematical morphology transform.The icing images from the artificial climatic chamber and transmission lines are used to test the methods above.The results show that the method based on the wavelet transform and the floating threshold method does well in the extraction of relatively smooth edges,such as glaze icing on conductor and icing on the insulator;meanwhile,the method based on the optimal threshold method and the mathematical morphology transform does well in the edge extraction of icing on the conductor,especially the opaque rime icing on the conductor with complicated edges.
基金Project supported by National Basic Research Program of China (973 Program) (2011 CB209402)Fundamental Research Funds for the Central Universities(13XS07)
文摘Audible noise from high voltage transmission lines’ corona discharge has become one of the decisive factors affecting design of high voltage transmission lines, thus it is very important to study the spatial propagation characteristics of audible noise for its accurate pre- diction. A calculation model for the propagation of audible noise is presented in this paper, which is based on the basic equation of the sound wave and can involve the influences of the atmosphere absorption and ground effects. The effects of different ground impedances and the atmospheric attenuation on the distribution of sound pressure level are discussed in this paper. The results show that the atmospheric absorp- tion may increase the attenuation of the audible noise, and the ground surface affects both the amplitude and phase of the sound. The spatial distribution fluctuates considering the ground effects. The atmospheric attenuation and the ground effect are closely related to the frequency of the noise. In the frequency range of the audible noise, the influence of atmospheric attenuation on the spatial propagation characteristics is more obvious in high frequency while ground has significant influences in low frequency.
基金Supported by the National Natural Science Foundation of China( 61974104)。
文摘Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.
基金supported by the Special Fund of the National Basic Research Program of China (973 Program) (No.2009CB219704)
文摘A simulation system for power grid with concentrated large-scale wind farm integration is established based on the electro-magnetic transient model of wind turbine equipped with doubly-fed induction generator (DFIG),which is built by real-time digital simulator (RTDS).Using the hardware communication interface of RTDS,a closed-loop testing experiment is accomplished to study the impacts of large-scale wind farms on the existing relay protection devices for wind farm outgoing transmission line.This paper points out problems existing in current relay protection devices as follows:fault phase selector can select unwanted phase due to the changes of fault features caused by special network connection of wind farms;blocking condition for distance protections needs to be re-examined due to the weak power-feed characteristics of wind farms;and power frequency parameter based relay protection devices cannot accurately operate due to the special transient voltage and current characteristics of wind farms during fault period.Results lay the foundation for improving the performances of the existing relay protection device and developing new principle relay protection.
文摘To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.
文摘In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.
基金Project supported by National Natural Science Foundation of China (51277064).
文摘Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved shielding angle is proposed for evaluating the lightning performance in different terrains.The digital elevation model(DEM) is used to obtain the micro-topography data,such as the slope gradient,slope aspect,etc.The following results are obtained by analyzing the influence of topography factors on the improved shielding angle:(1) improved shielding angle non-linearly increases with the increase of the slope gradient and the slope aspect,(2) improved shielding angle is more sensitive to the slope gradient than to the slope aspect,(3) the improved shielding angle in the mountain terrains is much greater than the designed shielding angle.This may be the reason why the designed shielding angle is limited into the rational range,while the shielding faults occur frequently.
基金Project Supported by National Natural Science Foundation of China (50707036), Key Project of the National Eleventh-five Year Research Program of China (2006BAA02A18).
文摘The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.
基金supported by National Basic Research Program of China(973 Program)(2011CB209404)
文摘An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.