In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive...In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive sensing method,a flexural-hinged Stewart platform is designed as the flexible structure,and a straightforward optimization method considering the force and sensitivity isotropy of the sensor is proposed to determine geometric parameters which are best suited for the given external loads.The accuracy of this method is preliminarily discussed by finite element methods(FEMs).The sensor prototype is fabricated with the development of the electronic system.Calibration and dynamic loading tests for this sensor prototype are carried out.The working ranges of this sensor prototype are 30 N and 300 N·mm,and resolutions are 0.08 N in radial directions,0.25 N in axial direction,and 2.4 N·mm in rotational directions.It also exhibits a good capability for a typical dynamic force sensing at a frequency close to the normal heart rate of an adult.The sensor is compatible with surgical instruments for force feedback in RMIS.展开更多
In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, u...In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, using moment theorem to calculate the hit force; 2) The mould, sensor and support pole are in one system, using the method in reference [1] that measures the dynamic strain and displacement of simulate target of bulletproof clothes. We compute the transfigure energy and momentum energy when hitting the mould, the work done by the sensor and the expend energy of support pole. We get the hit force of helmet using energy balance principle. The result is according with the test and has been used to design the GGK93T bulletproof helmet and other serial products.展开更多
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data...Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.展开更多
基金Project(SS2012AA041601)supported by National High Technology Research and Development Program of ChinaProject(81201150)supported by the National Natural Science Foundation of China
文摘In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive sensing method,a flexural-hinged Stewart platform is designed as the flexible structure,and a straightforward optimization method considering the force and sensitivity isotropy of the sensor is proposed to determine geometric parameters which are best suited for the given external loads.The accuracy of this method is preliminarily discussed by finite element methods(FEMs).The sensor prototype is fabricated with the development of the electronic system.Calibration and dynamic loading tests for this sensor prototype are carried out.The working ranges of this sensor prototype are 30 N and 300 N·mm,and resolutions are 0.08 N in radial directions,0.25 N in axial direction,and 2.4 N·mm in rotational directions.It also exhibits a good capability for a typical dynamic force sensing at a frequency close to the normal heart rate of an adult.The sensor is compatible with surgical instruments for force feedback in RMIS.
文摘In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, using moment theorem to calculate the hit force; 2) The mould, sensor and support pole are in one system, using the method in reference [1] that measures the dynamic strain and displacement of simulate target of bulletproof clothes. We compute the transfigure energy and momentum energy when hitting the mould, the work done by the sensor and the expend energy of support pole. We get the hit force of helmet using energy balance principle. The result is according with the test and has been used to design the GGK93T bulletproof helmet and other serial products.
文摘Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.