期刊文献+
共找到1,285篇文章
< 1 2 65 >
每页显示 20 50 100
Color-texture segmentation using JSEG based on Gaussian mixture modeling 被引量:4
1
作者 Wang Yuzhong Yang Jie Zhou Yue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期24-29,共6页
An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift ... An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust. 展开更多
关键词 color image segmentation JSEG adaptive mean shift based dustering gaussian mixture modeling soft J-value.
在线阅读 下载PDF
A multi-target tracking algorithm based on Gaussian mixture model 被引量:4
2
作者 SUN Lili CAO Yunhe +1 位作者 WU Wenhua LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期482-487,共6页
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ... Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiple-target tracking gaussian mixture model(GMM) data association expectation maximization(EM)algorithm
在线阅读 下载PDF
An efficient approach for shadow detection based on Gaussian mixture model 被引量:2
3
作者 韩延祥 张志胜 +1 位作者 陈芳 陈恺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1385-1395,共11页
An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and fore... An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate(the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step. 展开更多
关键词 shadow detection gaussian mixture model EM algorithm
在线阅读 下载PDF
Adaptive learning algorithm based on mixture Gaussian background 被引量:9
4
作者 Zha Yufei Bi Duyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期369-376,共8页
The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are... The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy. 展开更多
关键词 mixture gaussian model Background model Learning algorithm.
在线阅读 下载PDF
考虑光伏不确定性的主动配电网自适应鲁棒优化经济调度策略
5
作者 卢芳 王振宇 +2 位作者 刘宏达 谢彪 宋紫薇 《电力系统保护与控制》 北大核心 2025年第9期93-106,共14页
针对光伏出力随机性对主动配电网经济性的影响,提出一种基于高斯混合模型(Gaussian mixture model,GMM)的自适应鲁棒优化调度策略,以降低系统运行成本。首先,将光伏出力分为光照充足和光照不足两种情况,采用GMM对光伏出力历史数据进行... 针对光伏出力随机性对主动配电网经济性的影响,提出一种基于高斯混合模型(Gaussian mixture model,GMM)的自适应鲁棒优化调度策略,以降低系统运行成本。首先,将光伏出力分为光照充足和光照不足两种情况,采用GMM对光伏出力历史数据进行聚类分析,生成不同光照条件下不同时刻光伏出力不确定集的均值与标准差,并基于拉依达准则构建了不同光照条件下的精确不确定性集。其次,建立了以配电网总调度成本最小化为目标的自适应鲁棒优化调度模型,充分考虑了光伏出力的不确定性,并运用仿射决策规则进行求解,增强了模型对光伏波动的适应性。最后,通过改进的IEEE33节点配电网系统进行仿真验证,结果表明,该模型在保证系统安全性的同时,相较于经典区间集和多面体集有效降低了运行成本,优化结果的保守性小。 展开更多
关键词 主动配电网 自适应鲁棒优化 高斯混合模型 不确定性
在线阅读 下载PDF
弹丸卫星接收机误差建模与弹道参数估计方法
6
作者 杨瑞伟 林子杨 +2 位作者 申强 吴永辉 李红云 《北京理工大学学报》 北大核心 2025年第4期334-343,共10页
针对弹道修正弹在弹道环境下状态估计精度差的问题,利用试验过程中的数据,从弹丸记录仪卫星定位和测速数据与雷达数据中分离出弹丸飞行过程中弹道测量误差序列,使用高斯混合模型(GMM)对误差概率分布进行近似拟合,并对其表述形式进行统一... 针对弹道修正弹在弹道环境下状态估计精度差的问题,利用试验过程中的数据,从弹丸记录仪卫星定位和测速数据与雷达数据中分离出弹丸飞行过程中弹道测量误差序列,使用高斯混合模型(GMM)对误差概率分布进行近似拟合,并对其表述形式进行统一.对传统的高斯混合扩展卡尔曼滤波(GMEKF)算法进行改进,考虑噪声在相邻多个时刻之间的相关性,使用AR模型将有色观测噪声解耦并使用状态扩增法、差分法对有色噪声进行白化处理.以修正弹弹道仿真为例进行算法验证及对比,实验结果证明了改进GMEKF算法在提升弹道参数估计精度以及落点精度的有效性. 展开更多
关键词 非高斯有色噪声 高斯混合模型 高斯混合扩展卡尔曼滤波 状态估计
在线阅读 下载PDF
基于AE并融合GMM与K-means的无监督颤振监测研究
7
作者 王丹 张凤南 +1 位作者 马岩尉 刘博 《工具技术》 北大核心 2025年第2期139-145,共7页
金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣... 金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣削实验。该方法基于自动编码将信号的每一段压缩成二维,使用基于高斯混合模型和K-means合并的混合聚类方法对压缩信号进行聚类。所提出的方法在所有6个典型的无监督评价指标中都优于高斯混合模型和K-means算法。 展开更多
关键词 颤振监测 高斯混合模型 K-MEANS 无监督聚类 自动编码器
在线阅读 下载PDF
异质车联网数据的群联邦迁移学习共享方法研究
8
作者 康海燕 柯慧敏 邱晓英 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期1-10,共10页
为了解决联邦学习在车联网中终端设备数据的异质性导致模型训练准确率不稳定和性能下降,以及车辆分布广泛,通信和计算资源有限的问题,提出一种数据类型和数据规模并行优化的群联邦迁移学习数据共享方法(swarm federated transfer learni... 为了解决联邦学习在车联网中终端设备数据的异质性导致模型训练准确率不稳定和性能下降,以及车辆分布广泛,通信和计算资源有限的问题,提出一种数据类型和数据规模并行优化的群联邦迁移学习数据共享方法(swarm federated transfer learning,SFTL)。提出基于高斯混合模型的共识设备组划分机制,通过对数据分布建模构建共识设备组,实现对异质性数据的有效管理和分析;面向划分的共识设备组,设计蜂群学习训练机制,加强相似设备组之间的协同学习过程;提出组间迁移学习机制,通过模型预训练法增量迁移不同共识设备组信息最小化模型差异,提高联邦模型聚合准确率。在公共数据集上的实验表明:与基线方法相比,SFTL模型训练准确率平均提高7%,通信时间平均降低10%。 展开更多
关键词 蜂群学习 联邦学习 车联网 高斯混合模型 迁移学习
在线阅读 下载PDF
考虑城市道路局部交通运行环境随机变化的跟驰模型
9
作者 陈昱光 梁子禄 +2 位作者 胡山 杨彬 林弘灏 《安全与环境学报》 北大核心 2025年第4期1391-1399,共9页
针对现有模型较少考虑交通运行环境拥挤情况对车辆跟驰行为的影响以及交通运行环境在行驶过程中受到外部影响随机变化的情况,试图建立更加符合不同交通运行环境的车辆跟驰模型。为此,提取速度、速度标准差、局部空间占有率三个指标,基... 针对现有模型较少考虑交通运行环境拥挤情况对车辆跟驰行为的影响以及交通运行环境在行驶过程中受到外部影响随机变化的情况,试图建立更加符合不同交通运行环境的车辆跟驰模型。为此,提取速度、速度标准差、局部空间占有率三个指标,基于模糊C均值(Fuzzy C-Means, FCM)算法对交通运行环境进行聚类分析并实现有效量化。针对交通运行环境随时间变化的情况,拟合不同运行环境下的期望速度函数,引入高斯混合隐马尔可夫模型(Hidden Markov Model with Gaussian Mixture Model, GMMHMM)实现不同交通运行环境的识别及期望速度函数的转换,进而构建一种考虑不同交通运行环境下的车辆跟驰模型。最后,通过下一代模拟(Next Generation Simulation, NGSIM)轨迹数据,利用遗传算法标定模型参数。结果表明,与经典的全速度差(Full Velocity Difference, FVD)模型相比,所提出的跟驰模型能够更好地拟合车辆跟驰数据,其平均绝对误差(Mean Absolute Error, MAE)、均方根误差(Root Mean Square Error, RMSE)分别降低了35%、39%,R2提高了238%。 展开更多
关键词 安全工程 交通运行环境 跟驰模型 高斯混合隐马尔可夫模型 全速度差模型
在线阅读 下载PDF
基于GMM与参考光伏模型双层优化的台区分布式光伏发电功率分解方法
10
作者 王守相 魏孟迪 +2 位作者 赵倩宇 郭陆阳 陈海文 《高电压技术》 北大核心 2025年第7期3443-3454,共12页
提高配电台区分布式光伏的监测能力对配电系统安全运行、电力分配和需求响应等任务具有重要意义。然而,台区绝大部分用户侧的分布式光伏不具备直接量测条件,无法实现对台区光伏发电功率的准确计量。针对这类问题,提出一种基于高斯混合模... 提高配电台区分布式光伏的监测能力对配电系统安全运行、电力分配和需求响应等任务具有重要意义。然而,台区绝大部分用户侧的分布式光伏不具备直接量测条件,无法实现对台区光伏发电功率的准确计量。针对这类问题,提出一种基于高斯混合模型(Gaussian mixture model,GMM)与参考光伏模型的双层优化方法,通过使用台区总功率和少量参考光伏发电功率来识别并分解出台区光伏发电功率。首先,依据台区光伏出力特性,设计了权重动态时间规整(weighted dynamic time warping,WDTW)对台区总功率进行聚类,识别2类光伏发电状态下的台区总功率数据,实现对负荷用电功率数据的近似生成。然后,针对负荷用电功率的分布特征,设计了一种由多组高斯分布组成的GMM模型,实现对日夜间负荷用电功率联合分布的模拟。最后,基于负荷联合分布和参考光伏等值模型的构建,采用考虑极大似然估计的二次序列优化双层调优方法分解得到台区光伏发电功率。研究结果表明,与其他方法相比,所提模型在实际工况下具备更高的光伏发电功率分解精度。 展开更多
关键词 光伏发电功率分解 权重动态时间规整 高斯混合模型 参考光伏模型 极大似然估计 双层优化
在线阅读 下载PDF
基于GMM的GB-InSAR图像PS点选择方法
11
作者 田卫明 王龙跃 +1 位作者 高嵩 邓云开 《电子学报》 北大核心 2025年第4期1153-1163,共11页
永久散射体(Permanent Scatterer,PS)点选择是地基干涉合成孔径雷达(Ground-Based Interferometric Synthetic Aperture Radar,GB-InSAR)处理中的关键步骤.现有的PS点选择方法依赖于幅相稳定性或像元之间的高相干性筛选PS点,其中幅相稳... 永久散射体(Permanent Scatterer,PS)点选择是地基干涉合成孔径雷达(Ground-Based Interferometric Synthetic Aperture Radar,GB-InSAR)处理中的关键步骤.现有的PS点选择方法依赖于幅相稳定性或像元之间的高相干性筛选PS点,其中幅相稳定性对相位波动敏感,在一些情况下不能很好地表征PS点的相位误差,而基于高相干性的方法基于局部窗口,容易造成误检.针对上述问题,本文分析了GB-InSAR图像中PS点与非PS点的干涉相位在分布特征上的差异,并基于此提出了一种基于高斯混合模型(Gaussian Mixture Model,GMM)的PS点选择方法.首先在保证质量的前提下,选择足够数量的PS点作为先验参考信息,然后使用GMM拟合参考PS点干涉相位的概率分布,最后依靠全图像元的干涉相位序列与GMM的匹配程度区分PS点与非PS点.实测数据表明,与基于幅相稳定性的传统方法相比,在获得的PS点数量接近的情况下,本文方法获取的PS点的相关性更强,干涉相位序列聚合程度更高,且残差点数量更少. 展开更多
关键词 永久散射体(PS) 地基干涉合成孔径雷达(GB-InSAR) 高斯混合模型(GMM)
在线阅读 下载PDF
一种基于DTW-DP-GMM的工业机器人轨迹学习策略 被引量:2
12
作者 肖洒 陈旭阳 +1 位作者 叶锦华 吴海彬 《天津大学学报(自然科学与工程技术版)》 EI CAS 北大核心 2025年第1期68-80,共13页
针对机器人示教编程过程中使用高斯混合模型(GMM)规划运动轨迹时存在的高斯分布个数难以选择、复现轨迹精度较低等问题,提出了一种复合的机器人运动轨迹学习策略.该策略包含动态时间规整(DTW)算法、高斯混合模型与道格拉斯-普克(DP)算法... 针对机器人示教编程过程中使用高斯混合模型(GMM)规划运动轨迹时存在的高斯分布个数难以选择、复现轨迹精度较低等问题,提出了一种复合的机器人运动轨迹学习策略.该策略包含动态时间规整(DTW)算法、高斯混合模型与道格拉斯-普克(DP)算法.首先,针对示教过程中采集的多条轨迹在时间长度上存在差异的问题,采用DTW算法来统一示教轨迹在时域上的变化.其次,使用GMM算法对示教轨迹的特征进行提取,并利用高斯混合回归(GMR)算法将其重构为复现轨迹.在这个过程中采用DP算法来预估GMM算法的关键参数高斯分布的数量,与传统方法相比,能够简单直观地得到相对准确的参数值.利用DP算法对复现轨迹的数据点进行稀疏化并优化,不仅确保了机器人最终运动轨迹的精度,而且大幅减少了最终轨迹数据点的数量.最后,进行了不同形状的模拟焊接轨迹学习规划实验.结果表明:经由DTW对齐后的示教轨迹具有更加明显的运动特征,经过GMM-GMR学习输出的复现轨迹具有良好的表征结果;在使用GMM-GMR算法学习示教轨迹的过程中,采用DP算法可以有效预估高斯分布个数;经过DP算法稀疏化并优化的最终轨迹的平均位置误差均在0.500 mm以内,其最大误差可以控制在0.800 mm以内,可以满足焊接轨迹规划的精度要求,验证了该策略的有效性和优越性. 展开更多
关键词 工业机器人 示教编程 高斯混合模型 道格拉斯-普克算法 动态时间规整 轨迹复现
在线阅读 下载PDF
基于聚类集成的地下空间地质环境质量三维评价 被引量:1
13
作者 熊芸莹 李晓晖 +3 位作者 袁峰 卢志堂 吴少元 窦帆帆 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期78-84,91,共8页
城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型... 城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型,采用多种聚类模型的聚类集成算法对地下空间地质环境质量进行评价。利用K-means、高斯混合模型、自组织神经网络等聚类模型计算结果,结合重标记法的聚类集成算法实现地质环境质量评价。以厦门市某区为例,基于三维评价指标信息,利用上述分析方法进行评价,并与层次分析法结合多级指数叠加法评价结果进行对比分析。结果表明,基于聚类集成的评价方法能够有效应用于地下空间地质环境质量三维分类及评价研究,相关评价结果可以更客观地为地下空间的安全合理开发提供支持和保障,更好地服务于城市地下空间的建设规划和可持续发展。 展开更多
关键词 地下空间 自组织神经网络 K-MEANS算法 高斯混合模型 聚类集成 三维
在线阅读 下载PDF
基于复合高斯混合模型的主动配电网全局概率电压灵敏度分析 被引量:1
14
作者 张认 王健 +2 位作者 商洁 海晨 刘皓明 《电网技术》 北大核心 2025年第1期295-305,I0096-I0099,共15页
高比例分布式电源(distributed generation,DG)的随机性加剧了主动配电网(active distribution network,ADN)电压波动,并使ADN电压安全分析愈加复杂,故提出了一种基于复合高斯混合模型(Gaussian mixture model,GMM)的全局概率电压灵敏... 高比例分布式电源(distributed generation,DG)的随机性加剧了主动配电网(active distribution network,ADN)电压波动,并使ADN电压安全分析愈加复杂,故提出了一种基于复合高斯混合模型(Gaussian mixture model,GMM)的全局概率电压灵敏度分析方法。首先推导基于节点道路交集阻抗的ADN全局电压灵敏度解析模型,量化所有节点功率波动对节点电压的影响。考虑到多个节点注入功率不确定性的叠加影响下,电压波动呈现非高斯分布特征,采用高斯混合模型刻画DG和负荷预测误差的概率特征。然后,基于全局灵敏度矩阵对DG和负荷预测误差GMM的仿射变换,构建源荷功率波动与电压波动的概率解析式。最后,推导DG和负荷不确定性对电压波动综合影响的复合GMM特征函数,建立基于复合GMM的全局概率电压灵敏度分析模型。算例结果表明,所提方法能够反映所有节点注入功率波动对节点电压波动影响的概率特征,可快速准确计算出ADN电压运行的越限概率。 展开更多
关键词 主动配电网 不确定性 复合高斯混合模型 全局电压灵敏度 电压越限
在线阅读 下载PDF
基于聚类SABO-VMD和组合神经网络的短期光伏发电功率预测 被引量:4
15
作者 冯建铭 希望·阿不都瓦依提 蔺红 《太阳能学报》 北大核心 2025年第2期357-366,共10页
针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Atte... 针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Attention)突出强相关性因素的影响。采用高斯混合模型聚类(GMM)划分历史光伏数据为数个天气类型,并提出基于减法平均的优化算法(SABO)优化变分模态分解(VMD)参数,实现对各天气类型数据的分解。实验结果表明:基于SABO-VMD优化数据分解参数能有效提高预测精度;经实验对比分析,该文所提模型精度明显更高。 展开更多
关键词 光伏功率 变分模态分解 神经网络 功率预测 注意力机制 高斯混合模型聚类
在线阅读 下载PDF
基于高斯混合模型双向聚类重采样和随机森林构建DLBCL早期复发预测模型
16
作者 王俊霞 张岩波 +9 位作者 余红梅 曹红艳 周洁 乔宇 张高源 于凯 王雪嫚 郭玉娇 赵志强 罗艳虹 《中国卫生统计》 北大核心 2025年第1期7-11,17,共6页
目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的... 目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的治疗提供参考。方法首先使用一种基于高斯混合模型双向聚类重采样的类别不平衡处理方法(Gaussian mixture model,GMM-GMM)处理数据,并与随机过采样(random over sampling,ROS)、合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)、Borderline-1 SMOTE、Borderline-2 SMOTE、GMM上采样、GMM下采样、SMOTE+RUS、SMOTE+GMM和GMM+RUS进行比较,然后以RF作为分类器验证10种类别不平衡方法的性能,之后为验证RF的性能,在处理后的数据集上使用logistic回归和决策树(decision tree,DT)作为对照,最后从区分度和校准度两方面对模型进行评价。结果在本文所有模型中,采用GMM-GMM的RF模型取得了相对最优的分类性能(accuracy=0.79,AUC=0.87,sensitivity=0.71,specificity=0.87,G-means=0.79,MSE=0.21)。结论GMM-GMM优于其他传统的重采样方法,结合RF用于DLBCL患者早期复发的预测取得了相对较好的分类结果,可以很好地实现对DLBCL患者早期复发的预测。 展开更多
关键词 类别不平衡 高斯混合模型聚类重采样 随机森林 复发预测 弥漫大B细胞淋巴瘤
在线阅读 下载PDF
基于深度特征探索的重力适配区选择算法
17
作者 张勇刚 张硕 +2 位作者 李宁 张嗣卿 那磊鑫 《中国惯性技术学报》 北大核心 2025年第6期546-558,共13页
高质量、特征丰富的匹配区域可以提高重力匹配导航的成功率。现有的匹配区域选择算法仍然存在区域遗漏和区域不连续的问题。为了解决上述问题,提出了基于深度特征探索的重力适配区选择算法。首先,对重力场重新建模并构建新的重力场特征... 高质量、特征丰富的匹配区域可以提高重力匹配导航的成功率。现有的匹配区域选择算法仍然存在区域遗漏和区域不连续的问题。为了解决上述问题,提出了基于深度特征探索的重力适配区选择算法。首先,对重力场重新建模并构建新的重力场特征。然后,利用深度特征探索的方法扩展重力场特征矩阵,并通过主成分分析(PCA)去除重力场特征矩阵的信息冗余。最后,利用高斯混合模型(GMM)对新的重力场特征矩阵进行划分。在匹配区域选择算法仿真实验中,所提算法相比于现有阈值法和Delaunay三角剖分法展现出显著优势,其中重力异常背景图1:所选重力强适配区面积分别增加34.19%和27.25%,重力异常背景图2:所选重力强适配区面积分别增加22.40%和16.04%。在惯导/重力匹配导航定位仿真实验中,采用所提算法选择出的强适配区,所有轨迹的匹配率都优于90%,导航精度优于1个网格精度。 展开更多
关键词 重力场模型 特征构建 数据增强 高斯混合模型 重力匹配区域
在线阅读 下载PDF
基于自适应阈值的变工况齿轮箱健康监测
18
作者 李伟男 李鑫 +1 位作者 石维喜 马新宇 《组合机床与自动化加工技术》 北大核心 2025年第7期60-65,72,共7页
齿轮箱的健康监测对于机械传动系统以及机械设备的健康管理极为重要。针对变工况齿轮箱在使用过程中的健康状态较难监测的情况,提出一种基于高斯混合模型(Gaussian mixture model,GMM)和局部分布差异(local distribution difference,LDD... 齿轮箱的健康监测对于机械传动系统以及机械设备的健康管理极为重要。针对变工况齿轮箱在使用过程中的健康状态较难监测的情况,提出一种基于高斯混合模型(Gaussian mixture model,GMM)和局部分布差异(local distribution difference,LDD)的自适应动态阈值健康监测方法。首先,对原始振动信号进行处理,从处理信号中提取特征,并依据单调性排序;使用核主成分分析对单调性较好的特征进行降维,构建退化趋势。再使用健康数据训练高斯混合模型,确定模型参数,并计算贝叶斯推断的距离(Bayesian inference distance,BID)。最后使用LDD动态调整滑动窗口大小并结合核密度估计(kernel density estimation,KDE)建立自适应阈值,对齿轮箱的健康状态进行监测。通过实验对比分析表明:本方法的预测准确性为99%,假警率为0.05%,灵敏度为98%,相较于其他方法有较大优势。 展开更多
关键词 齿轮箱 健康监测 高斯混合模型 局部分布差异 自适应阈值
在线阅读 下载PDF
基于最大均值差异的子空间高斯混合模型聚类集成算法
19
作者 何玉林 李旭 +2 位作者 贺颖婷 崔来中 黄哲学 《计算机应用》 北大核心 2025年第6期1712-1723,共12页
针对高斯混合模型(GMM)聚类算法在处理大规模高维数据聚类时出现的性能受限和参数敏感的问题,提出一种基于最大均值差异(MMD)的子空间GMM聚类集成(SGMM-CE)算法。首先,对原始大规模高维数据集进行随机样本划分(RSP)以得到多个数据子集,... 针对高斯混合模型(GMM)聚类算法在处理大规模高维数据聚类时出现的性能受限和参数敏感的问题,提出一种基于最大均值差异(MMD)的子空间GMM聚类集成(SGMM-CE)算法。首先,对原始大规模高维数据集进行随机样本划分(RSP)以得到多个数据子集,从样本量的角度缩小聚类问题的规模;其次,根据特征对最优GMM构件数的影响,在每一个数据子集对应的高维特征空间中进行子空间学习,得到每个高维特征空间对应的多个低维特征子空间,并在各个子空间上进行GMM聚类,从而得到一系列异构的GMM;再次,利用所提出的平均共享隶属概率(ASAP),重标记与融合来自同一个数据子集的不同特征子空间上的聚类结果;最后,利用扩展的子空间MMD(SubMMD)作为不同数据子集的聚类结果中2个簇之间的分布一致性的度量准则,据此重标记并融合这些数据子集的聚类结果,进而得到原始数据集的最终聚类集成结果。通过详尽的实验验证SGMM-CE算法的有效性,实验结果显示,相较于对比算法中最好的元簇聚类算法(MCLA),SGMM-CE算法在选用的数据集上的平均标准化互信息(NMI)、聚类精度(CA)和调整兰德系数(ARI)值分别提升了19%,20%和52%。此外,可行性和合理性的实验结果证实了SGMM-CE算法的参数收敛性与时间高效性,表明该算法具备高效处理大规模高维数据聚类问题的能力。 展开更多
关键词 无监督学习 集成学习 子空间学习 最大均值差异 高斯混合模型
在线阅读 下载PDF
基于改进高斯混合模型的光伏短时波动游程聚类
20
作者 彭文静 郑迪 +2 位作者 蔡慧 邵海明 王家福 《电子测量技术》 北大核心 2025年第7期126-134,共9页
针对大规模光伏发电短时波动性对电能准确计量的挑战,本文提出一种基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法。首先,从游程理论出发分析了光伏输出的短时波动信号特征;其次,针对光伏短时波动信号分解得到游程过多、难以... 针对大规模光伏发电短时波动性对电能准确计量的挑战,本文提出一种基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法。首先,从游程理论出发分析了光伏输出的短时波动信号特征;其次,针对光伏短时波动信号分解得到游程过多、难以提取典型波动特征的问题,采用基于改进高斯混合模型聚类方法对海量游程进行聚类;进一步提出了主客观融合的聚类结果评价方法。最后,对光伏电站现场录波数据的仿真结果表明,相较于其他方法,所提方法聚类结果评分在各方面有1.1%~61.4%的提升;在不同噪声及异常值水平下所提方法也可以维持较好的聚类效果,复合指标评分下降程度小于其他算法0.92%~18.24%。所提方法通过深度学习技术和贝叶斯信息准则实现了高斯混合模型的自适应聚类,提高了对含噪声和异常值数据的适应能力和稳定性,能够实现光伏电站时波动信号游程的合理聚类。 展开更多
关键词 光伏短时波动信号 游程分析 改进高斯混合模型 游程聚类 贝叶斯信息准则
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部