期刊文献+
共找到2,180篇文章
< 1 2 109 >
每页显示 20 50 100
A single-task and multi-decision evolutionary game model based on multi-agent reinforcement learning 被引量:3
1
作者 MA Ye CHANG Tianqing FAN Wenhui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期642-657,共16页
In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the M... In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level. 展开更多
关键词 multi-agent reinforcement learning evolutionary game Q-LEARNING
在线阅读 下载PDF
Currency-based Iterative Multi-Agent Bidding Mechanism Based on Genetic Algorithm
2
作者 M K LIM Z ZHANG 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期113-,共1页
This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market a... This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided by other agents. Machine ag ents which represent the machines play an important role in the system in that t hey negotiate with each other to bid for jobs. An iterative bidding mechanism is proposed to facilitate the process of job assignment to machines and handle the negotiation between agents. This mechanism enables near optimal process plans a nd production schedules to be produced concurrently, so that dynamic changes in the market can be coped with at a minimum cost, and the utilisation of manufactu ring resources can be optimised. In addition, a currency scheme with currency-l ike metrics is proposed to encourage or prohibit machine agents to put forward t heir bids for the jobs announced. The values of the metrics are adjusted iterati vely so as to obtain an integrated plan and schedule which result in the minimum total production cost while satisfying products due dates. To deal with the optimisation problem, i.e. to what degree and how the currencies should be adj usted in each iteration, a genetic algorithm (GA) is developed. Comparisons are made between GA approach and simulated annealing (SA) optimisation technique. 展开更多
关键词 agile manufacturing multi-agent systems geneti c algorithm simulated annealing
在线阅读 下载PDF
Multi-Agent协同进化算法研究 被引量:8
3
作者 周铁军 李阳 《计算机工程》 CAS CSCD 北大核心 2009年第13期205-207,共3页
与传统优化方法相比,进化计算具有内在的并行性和自组织、自适应、自学习等智能特征,它在许多领域显示出巨大优势并取得一定成功。研究Multi-Agent协同进化算法,集成现有算法中的几种优势策略,利用混合策略的思想结合具体问题设计算法,... 与传统优化方法相比,进化计算具有内在的并行性和自组织、自适应、自学习等智能特征,它在许多领域显示出巨大优势并取得一定成功。研究Multi-Agent协同进化算法,集成现有算法中的几种优势策略,利用混合策略的思想结合具体问题设计算法,并以实例说明该算法的有效性。 展开更多
关键词 多智能体 进化算法 蚁群算法
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
4
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
5
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
6
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
7
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
8
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 Constrained optimization evolutionary algorithm multi-agentS swarm intelligence
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
9
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
Multidisciplinary design optimization for air-condition production system based on multi-agent technique 被引量:2
10
作者 杨海东 鄂加强 屈挺 《Journal of Central South University》 SCIE EI CAS 2012年第2期527-536,共10页
In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on t... In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on the multi-agent technology. Local operation models for departments of plan, marketing, sales, purchasing, as well as production and warehouse are formulated into individual agents, and their respective local objectives are collectively formulated into a multi-objective optimization problem. Considering the coupling effects among the correlated agents, the optimization process is carried out based on self-adaptive chaos immune optimization algorithm with mutative scale. The numerical results indicate that the proposed multi-agent optimization model truly reflects the actual situations of the air-condition production system. The proposed multi-agent based multidisciplinary design optimization method can help companies enhance their income ratio and profit by about 33% and 36%, respectively, and reduce the total cost by about 1.8%. 展开更多
关键词 multi-agent system production operation multidisciplinary optimization self-adaptive chaos optimization immune optimization algorithm
在线阅读 下载PDF
A new improved Alopex-based evolutionary algorithm and its application to parameter estimation 被引量:1
11
作者 桑志祥 李绍军 董跃华 《Journal of Central South University》 SCIE EI CAS 2013年第1期123-133,共11页
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio... In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves. 展开更多
关键词 ALOPEX evolutionary algorithm Alopex-based evolutionary algorithm clone selection parameter estimation
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
12
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Web mining based on chaotic social evolutionary programming algorithm
13
作者 Xie Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1272-1276,共5页
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evoluti... With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 展开更多
关键词 web clustering chaotic social evolutionary programming K-means algorithm
在线阅读 下载PDF
一种基于合作协同进化的智能超表面辅助无人机通信系统联合波束成形方法 被引量:1
14
作者 仲伟志 万诗晴 +4 位作者 段洪涛 范振雄 林志鹏 黄洋 毛开 《电子与信息学报》 北大核心 2025年第2期334-343,共10页
针对传统联合波束成形方法在智能超表面(RIS)辅助无人机(UAV)通信系统优化中存在的局限性,包括针对RIS仅考虑相移矩阵优化、优化方法缺乏应用普适性等问题,该文面向RIS辅助无人机通信服务多用户场景,创新性提出一种基于合作协同进化(CC... 针对传统联合波束成形方法在智能超表面(RIS)辅助无人机(UAV)通信系统优化中存在的局限性,包括针对RIS仅考虑相移矩阵优化、优化方法缺乏应用普适性等问题,该文面向RIS辅助无人机通信服务多用户场景,创新性提出一种基于合作协同进化(CCEA)的联合波束优化方法。该方法利用两个子种群的独立进化将联合波束成形问题分解成RIS反射波波束设计和发射端波束设计两个子问题进行求解,通过进化过程中的信息交互与协作来实现联合波束成形设计。数值仿真结果表明,相较于仅考虑RIS相移矩阵设计的联合波束优化,CCEA通过设计RIS反射波波束形状改变了反射波在3维空间中的能量分布,进而提升了接收端信干噪比(SINR)和频谱效率;此外,基于种群的CCEA算法能够产生更加多样的解,因此在UAV和用户的不同位置设置下均能实现反射波对用户方向的有效覆盖,相对于传统方法能够避免局部最优、具有更强的应用普适性。 展开更多
关键词 无人机通信 智能超表面 联合波束成形 合作协同进化
在线阅读 下载PDF
多目标进化算法的改进在齿轮减速器中的应用
15
作者 高淑芝 任学鹏 张义民 《机械设计与制造》 北大核心 2025年第4期190-193,197,共5页
分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群... 分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群的多样性与收敛性之间的平衡。首先,采用了一种均匀随机的权重向量生成方式进行初始化;其次,采用Tchebycheff分解方法进行子代的更新;再次,将提出的自适应方法对分解的多目标进化算法进行了改进;最后,通过在标准测试函数和齿轮减速器的优化仿真,证明了提出的算法的有效性。 展开更多
关键词 多目标优化 分解算法 自适应 进化算法应用
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
16
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
考虑设备突发故障的露天矿无人矿卡集群调度优化
17
作者 顾清华 王雪晴 +2 位作者 王丹 张朋朋 王宇 《矿业科学学报》 北大核心 2025年第2期305-315,共11页
为减少露天矿开采设备突发故障的不确定性和随机性影响,以露天煤矿运输系统中的装载点和卸载点的生产设备为研究对象,提出考虑设备突发故障的露天矿无人矿卡集群调度模型。首先,以最小化卡车运输成本、卡车总空闲时间以及最大化矿石运... 为减少露天矿开采设备突发故障的不确定性和随机性影响,以露天煤矿运输系统中的装载点和卸载点的生产设备为研究对象,提出考虑设备突发故障的露天矿无人矿卡集群调度模型。首先,以最小化卡车运输成本、卡车总空闲时间以及最大化矿石运量为目标,建立初始调度模型;其次,考虑设备突发故障,构建与初始调度方案目标函数偏差最小的重新调度模型,进而提出一种基于代理模型辅助的自适应选择多目标进化算法,用克里金(Kriging)代理模型代替卡车调度仿真过程;最后,以国内某露天矿的相关数据进行仿真应用。结果表明:当运输系统受到设备突发故障干扰时,该方法能给出卡车总空闲时间更短以及矿石运量更多的调度优化调整方案。 展开更多
关键词 设备突发故障 多目标进化算法 露天煤矿 重新调度
在线阅读 下载PDF
基于随机对称搜索的进化强化学习算法
18
作者 邸剑 万雪 姜丽梅 《计算机工程与科学》 北大核心 2025年第5期912-920,共9页
进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网... 进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网络参数中心的基础上由最优策略网络参数指导全局策略网络参数优化更新,同时辅以梯度优化,引导智能体进行多元探索。在MuJoCo的5个机器人运动连续控制任务中的实验结果表明,提出的算法性能优于以前的进化强化学习算法,且具有更快的收敛速度。 展开更多
关键词 深度强化学习 进化算法 进化强化学习 随机对称搜索
在线阅读 下载PDF
基于EA-RL算法的分布式能源集群调度方法
19
作者 程小华 王泽夫 +2 位作者 曾君 曾婧瑶 谭豪杰 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期1-9,共9页
目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负... 目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负荷进行个体建模,并基于个体调度模型建立了包含辅助调峰调频的多场景分布式能源集群优化调度模型;基于进化强化学习算法框架,提出了一种EA-RL算法,该算法融合了遗传算法(GA)与深度确定性策略梯度(DDPG)算法,以经验序列作为遗传算法个体进行交叉、变异、选择,筛选出优质经验加入DDPG算法经验池对智能体进行指导训练以提高算法的搜索效率和收敛性;根据多场景调度模型构建分布式能源集群多场景调度问题的状态空间和动作空间,再以最小化调度成本、最小化辅助服务调度指令偏差、最小化联络线越限功率以及最小化源荷功率差构建奖励函数,完成强化学习模型的建立;为验证所提算法模型的有效性,基于多场景的仿真算例对调度智能体进行离线训练,形成能够适应电网多场景的调度智能体,通过在线决策的方式进行验证,根据决策结果评估其调度决策能力,并通过与DDPG算法的对比验证算法的有效性,最后对训练完成的智能体进行了连续60d的加入不同程度扰动的在线决策测试,验证智能体的后效性和鲁棒性。 展开更多
关键词 分布式能源集群 深度强化学习 进化强化学习算法 多场景一体化调度
在线阅读 下载PDF
一种进化梯度引导的强化学习算法
20
作者 许斌 练元洪 +2 位作者 卞鸿根 刘丹 亓晋 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期99-105,共7页
进化算法(Evolutionary Algorithm,EA)和深度强化学习(Deep Reinforcement Learning,DRL)的组合被认为能够结合二者的优点,即EA的强大随机搜索能力和DRL的样本效率,实现更好的策略学习。然而,现有的组合方法存在EA引入所导致的策略性能... 进化算法(Evolutionary Algorithm,EA)和深度强化学习(Deep Reinforcement Learning,DRL)的组合被认为能够结合二者的优点,即EA的强大随机搜索能力和DRL的样本效率,实现更好的策略学习。然而,现有的组合方法存在EA引入所导致的策略性能不可预测性问题。提出自适应历史梯度引导机制,其利用历史梯度信息,找到平衡探索和利用的线索,从而获得较为稳定的高质量策略,进一步将此机制融合经典的进化强化学习算法,提出一种进化梯度引导的强化学习算法(Evolutionary Gradient Guided Reinforcement Learning,EGG⁃RL)。在连续控制任务方面的实验表明,EGG⁃RL的性能表现优于其他方法。 展开更多
关键词 CEM⁃RL 深度强化学习 进化算法 历史梯度
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部