This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market a...This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided by other agents. Machine ag ents which represent the machines play an important role in the system in that t hey negotiate with each other to bid for jobs. An iterative bidding mechanism is proposed to facilitate the process of job assignment to machines and handle the negotiation between agents. This mechanism enables near optimal process plans a nd production schedules to be produced concurrently, so that dynamic changes in the market can be coped with at a minimum cost, and the utilisation of manufactu ring resources can be optimised. In addition, a currency scheme with currency-l ike metrics is proposed to encourage or prohibit machine agents to put forward t heir bids for the jobs announced. The values of the metrics are adjusted iterati vely so as to obtain an integrated plan and schedule which result in the minimum total production cost while satisfying products due dates. To deal with the optimisation problem, i.e. to what degree and how the currencies should be adj usted in each iteration, a genetic algorithm (GA) is developed. Comparisons are made between GA approach and simulated annealing (SA) optimisation technique.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication ...As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication schemes can bring much timing redundancy and irrelevant messages,which seriously affects their practical application.To solve this problem,this paper proposes a targeted multiagent communication algorithm based on state control(SCTC).The SCTC uses a gating mechanism based on state control to reduce the timing redundancy of communication between agents and determines the interaction relationship between agents and the importance weight of a communication message through a series connection of hard-and self-attention mechanisms,realizing targeted communication message processing.In addition,by minimizing the difference between the fusion message generated from a real communication message of each agent and a fusion message generated from the buffered message,the correctness of the final action choice of the agent is ensured.Our evaluation using a challenging set of Star Craft II benchmarks indicates that the SCTC can significantly improve the learning performance and reduce the communication overhead between agents,thus ensuring better cooperation between agents.展开更多
文摘This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided by other agents. Machine ag ents which represent the machines play an important role in the system in that t hey negotiate with each other to bid for jobs. An iterative bidding mechanism is proposed to facilitate the process of job assignment to machines and handle the negotiation between agents. This mechanism enables near optimal process plans a nd production schedules to be produced concurrently, so that dynamic changes in the market can be coped with at a minimum cost, and the utilisation of manufactu ring resources can be optimised. In addition, a currency scheme with currency-l ike metrics is proposed to encourage or prohibit machine agents to put forward t heir bids for the jobs announced. The values of the metrics are adjusted iterati vely so as to obtain an integrated plan and schedule which result in the minimum total production cost while satisfying products due dates. To deal with the optimisation problem, i.e. to what degree and how the currencies should be adj usted in each iteration, a genetic algorithm (GA) is developed. Comparisons are made between GA approach and simulated annealing (SA) optimisation technique.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
文摘As an important mechanism in multi-agent interaction,communication can make agents form complex team relationships rather than constitute a simple set of multiple independent agents.However,the existing communication schemes can bring much timing redundancy and irrelevant messages,which seriously affects their practical application.To solve this problem,this paper proposes a targeted multiagent communication algorithm based on state control(SCTC).The SCTC uses a gating mechanism based on state control to reduce the timing redundancy of communication between agents and determines the interaction relationship between agents and the importance weight of a communication message through a series connection of hard-and self-attention mechanisms,realizing targeted communication message processing.In addition,by minimizing the difference between the fusion message generated from a real communication message of each agent and a fusion message generated from the buffered message,the correctness of the final action choice of the agent is ensured.Our evaluation using a challenging set of Star Craft II benchmarks indicates that the SCTC can significantly improve the learning performance and reduce the communication overhead between agents,thus ensuring better cooperation between agents.