期刊文献+
共找到42,553篇文章
< 1 2 250 >
每页显示 20 50 100
便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究
1
作者 向艳芳 石红 +1 位作者 张家臣 蔡耀仪 《分析测试学报》 北大核心 2025年第6期1075-1085,共11页
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼... 野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1648类矿物的5668个光谱样本被送入生成对抗网络进行训练并产生15000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。 展开更多
关键词 拉曼光谱 矿物识别 重采样方法 多尺度卷积网络 条件生成对抗网络(CGAN)样本生成
在线阅读 下载PDF
智算中心Scale-Out网络的演进及GSE的实践
2
作者 程伟强 李新双 +1 位作者 白艳 吕勇 《中兴通讯技术》 北大核心 2025年第2期14-20,共7页
探讨了人工智能(AI)大模型时代智算中心网络面临的技术挑战,重点分析了传统互联网协议(IP)网络在负载均衡和突发流量处理方面的局限性,并对比了基于以太网融合远程直接内存访问(RoCE)的优化与网络架构重构两种技术路线。研究聚焦中国自... 探讨了人工智能(AI)大模型时代智算中心网络面临的技术挑战,重点分析了传统互联网协议(IP)网络在负载均衡和突发流量处理方面的局限性,并对比了基于以太网融合远程直接内存访问(RoCE)的优化与网络架构重构两种技术路线。研究聚焦中国自主研发的全调度以太网(GSE)技术,详细阐述了其核心技术:基于报文容器(PKTC)的负载均衡机制和动态全调度队列(DGSQ)端到端拥塞控制技术。这些技术有效解决了智算网络中的流量极化和拥塞丢包问题。同时,系统分析了GSE网络设备在接口设计、转发引擎和队列管理等关键环节的创新架构,论证了GSE技术在构建高带宽、低时延、无阻塞新型网络方面的技术优势,为智算中心网络演进提供了重要参考。 展开更多
关键词 AI大模型 智算中心 scale-Out GSE RoCE 负载均衡 拥塞避免
在线阅读 下载PDF
嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型
3
作者 张家源 窦全胜 唐焕玲 《计算机应用与软件》 北大核心 2025年第6期218-224,240,共8页
针对目标检测方法中网络采用固定感受野使卷积提取特征时只关注常规尺寸目标而忽略小目标的特征造成检测精度低的问题,提出自适应空间注意力机制,增加并行的不同大小卷积核,嵌入Scaled-YOLOv4残差结构的3×3卷积层中,使网络根据不... 针对目标检测方法中网络采用固定感受野使卷积提取特征时只关注常规尺寸目标而忽略小目标的特征造成检测精度低的问题,提出自适应空间注意力机制,增加并行的不同大小卷积核,嵌入Scaled-YOLOv4残差结构的3×3卷积层中,使网络根据不同的尺寸的物体自主调节感受野大小加强对小目标特征的提取。实验结果表明,新的网络模型能有效提升小目标的检测精度,并改善原模型存在的误检和漏检问题。在MSCOCO和PASCAL VOC等数据集上的检测精度均比之前有较大提升。 展开更多
关键词 小目标检测 scaled-YOLOv4 深度学习 注意力机制 自适应感受野
在线阅读 下载PDF
改进Multi-scale ResNet的蔬菜叶部病害识别 被引量:49
4
作者 王春山 周冀 +3 位作者 吴华瑞 滕桂法 赵春江 李久熙 《农业工程学报》 EI CAS CSCD 北大核心 2020年第20期209-217,共9页
基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResN... 基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResNet18)的基础上,提出了改进型的多尺度残差(Multi-scale ResNet)轻量级病害识别模型,通过增加多尺度特征提取模块,改变残差层连接方式,将大卷积核分解,进行群卷积操作,显著减少了模型参数、降低了存储空间和运算开销。结果表明,在PlantVillage和AI Challenge2018中15种病害图像数据集中取得了95.95%的准确率,在自采集的7种真实环境病害图像数据中取得了93.05%的准确率,在准确率较ResNet18下降约3.72%的情况下,模型的训练参数减少93%左右,模型总体尺寸缩减约35%。该研究提出的改进型Multi-scale ResNet使蔬菜叶部病害识别模型具备了在硬件受限的场景下部署和运行的能力,平衡了模型的复杂度和识别精度,为基于深度网络模型的病害识别系统进行边缘部署提供了思路。 展开更多
关键词 图像处理 病害 图像识别 多尺度 轻量化 残差层 ResNet18
在线阅读 下载PDF
基于改进Multi-Scale AlexNet的番茄叶部病害图像识别 被引量:78
5
作者 郭小清 范涛杰 舒欣 《农业工程学报》 EI CAS CSCD 北大核心 2019年第13期162-169,共8页
番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向... 番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向农业生产人员的番茄叶部病害图像识别系统。该文详细描述了AlexNet的结构,分析其不足,结合番茄病害叶片图像特点,去除局部响应归一化层、修改全连接层、设置不同尺度卷积核提取特征,设计了基于AlexNet的多感受野识别模型,并基于Android实现了使用此模型的番茄叶部病害图像识别系统。Multi-ScaleAlexNet模型运行所耗内存为29.9MB,比原始AlexNet的内存需求652MB降低了95.4%,该模型对番茄叶部病害及每种病害早中晚期的平均识别准确率达到92.7%,基于此模型的Andriod端识别系统在田间的识别率达到89.2%,能够满足生产实践中移动平台下的病害图像识别需求。研究结果可为基于卷积神经网络的作物病害图像识别提供参考,为作物病害的自动化识别和工程化应用参考。 展开更多
关键词 图像处理 病害 图像识别 算法 卷积神经网络 番茄病害 多尺度
在线阅读 下载PDF
Robust Corner Detection Based on Multi-scale Curvature Product in B-spline Scale Space 被引量:3
6
作者 WANG Yu-Zhu YANG Dan ZHANG Xiao-Hong 《自动化学报》 EI CSCD 北大核心 2007年第4期414-417,共4页
这份报纸在 B 花键弯曲规模空间的框架论述一种多尺度的弯曲产品角落察觉技术。规模产品功能在不同规模从轮廓的弯曲产品被导出。角落被 thresholding 作为本地最大值构造越过几规模的弯曲产品结果。通过规模产品,本地化精确性和察觉... 这份报纸在 B 花键弯曲规模空间的框架论述一种多尺度的弯曲产品角落察觉技术。规模产品功能在不同规模从轮廓的弯曲产品被导出。角落被 thresholding 作为本地最大值构造越过几规模的弯曲产品结果。通过规模产品,本地化精确性和察觉表演能显著地以 CNN 标准被改进。实验也证明那个建议方法显示出坚韧性到高频率细节并且提供有希望的察觉结果。 展开更多
关键词 曲线 刻度 自动化技术 小波
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
7
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS SPATIO-TEMPORAL teleconnection patterns multi-scale REGIONALIZATION
在线阅读 下载PDF
MULTI-SCALE DECOMPOSITION OF BOUGUER GRAVITY ANOMALY AND SEISMIC ACTIVITY IN NORTH CHINA
8
作者 Fang Shengming, Zhang Xiankang, Jia Shixu, Duan Yonghong, Yang Zhuoxin and Qiu Shuyan (Geophysical of Exploration Center, CEA, Zhengzhou 450002, China) 《大地测量与地球动力学》 CSCD 2003年第B12期34-40,共7页
Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to... Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to Moho. Characteristics of anomalies of different orders and corresponding structural features are discussed. The result shows that details of wavelet transform of different orders reflect the distribution features of rock density at different depths and in various scales. In most cases, the two sides of a fault especially a deep and large fault in North China differ greatly in rock density. This difference records the history of the formation and evolution of the crust. Deep structural setting for the \%M\%s≥7.0 strong earthquakes in this region is also discussed. 展开更多
关键词 弱波的多级化解 区域地壳的特性 重力异常 岩石密度 中国北方 地震活动
在线阅读 下载PDF
不同格网尺度下生态系统服务价值空间分异及影响因素分析--以秦岭西安段为例 被引量:3
9
作者 马超群 弋志强 +2 位作者 员学锋 张硕蒙 张莎莎 《水土保持研究》 北大核心 2025年第1期389-399,共11页
[目的]探究生态系统服务价值空间分异的尺度效应,为秦岭地区的生态保护和经济发展决策提供参考。[方法]运用改进当量因子法,计算了2020年秦岭西安段5 km,3 km,2 km,1 km和0.5 km共5个格网尺度水平上的生态系统服务价值;采用空间自相关... [目的]探究生态系统服务价值空间分异的尺度效应,为秦岭地区的生态保护和经济发展决策提供参考。[方法]运用改进当量因子法,计算了2020年秦岭西安段5 km,3 km,2 km,1 km和0.5 km共5个格网尺度水平上的生态系统服务价值;采用空间自相关分析和冷热点分析归纳了不同尺度下地均ESV空间分异特征;并利用地理探测器对各尺度下的影响因素作用强度进行定量分析。[结果](1)地均ESV总体上呈北低南高的分布格局,具有小分散、大集聚的空间分布特征,并随尺度降低,其局部越丰富,但整体性降低;(2)2 km尺度适合进行宏观分析和做整体性布局规划,1 km尺度适合进行水域变化对区域ESV影响的研究;(3)格网尺度越小,各影响因素内部差异增加,其整体性特征减少,局部特征差异凸显,空间分异性增强;(4)人类活动带来的土地利用方式转变显著影响区域生态系统服务价值,多因素耦合作用显著影响区域地均ESV空间分异,随尺度降低,其影响减弱。[结论]秦岭西安段的生态保护要重点关注区域土地利用性质的转变,可继续加强退耕还林政策,管控建设用地的规模,在兼顾生态保护的基础上,制定经济发展的布局规划。 展开更多
关键词 生态系统服务价值 空间分异 地理探测器 多尺度 秦岭西安段
在线阅读 下载PDF
基于改进Res2Net与迁移学习的水果图像分类 被引量:3
10
作者 吴迪 肖衍 +2 位作者 沈学军 万琴 陈子涵 《电子科技大学学报》 北大核心 2025年第1期62-71,共10页
针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成... 针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成卷积核,利用meta-ACON激活函数优化ReLU激活函数,动态学习激活函数的线性和非线性,自适应选择是否激活神经元;其次,采用基于模型迁移的训练方式进一步提升分类的效率与鲁棒性。实验结果表明,该算法在Fruit-Dataset和Fruits-360数据集上的测试准确率相比Res2Net提升了1.2%和1.0%,召回率相比Res2Net提升了1.13%和0.89%,有效提升了水果图像分类性能。 展开更多
关键词 图像分类 Res2Net 动态多尺度融合注意力 激活函数 迁移学习
在线阅读 下载PDF
LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络 被引量:6
11
作者 董一兵 曾辉 侯少杰 《计算机工程与应用》 北大核心 2025年第3期94-110,共17页
针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了... 针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了解释。设计了一种轻量化的特征融合网络(UAV_RepGFPN),提出新的特征融合路径以及特征融合模块DBB_GELAN,降低参数量和计算量的同时,提高特征融合网络的性能。使用部分卷积(PConv)和三重注意力机制(Triplet Attention)构建特征提取模块(FTA_C2f),并引入ADown下采样模块,通过对输入特征图维度的重新排列和细粒度调整,以提升模型中深层网络对空间特征的捕捉能力,并进一步降低参数量和计算量。优化YOLOv9的可编程梯度信息(programmable gradient information,PGI)策略,设计基于上下文引导(Context_guided)的可逆架构,并额外生成三个辅助检测头,提出UAV_PGI可编程梯度方法,避免传统深度监督中多路径特征集成可能导致的语义信息损失。为了验证模型的有效性及泛化能力,在VisDrone 2019测试集上开展了对比实验,结果显示,与YOLOv8s相比,LMUAV-YOLOv8s的准确度、召回率、mAP@0.5和mAP@0.5:0.95等指标分别提升了4.2、3.9、5.1和3.0个百分点,同时参数量减少了63.9%,计算量仅增加0.4 GFLOPs,实现了检测性能与资源消耗的良好平衡。基于NVIDIA Jetson Xavier NX嵌入式平台的推理实验结果显示:与基线模型相比,该算法能够在满足实时检测要求的条件下,获得更高的检测精度,对于无人机实时目标检测场景具有较好的适用性。借助类激活图,对算法的决策过程进行了可视化分析,结果表明,该模型具备更优异的小尺度特征提取和高分辨率处理能力。 展开更多
关键词 小目标检测 多尺度 轻量化 YOLOv8 可编程梯度信息
在线阅读 下载PDF
基于尺度交互蒸馏网络的薄壳山核桃品种识别方法 被引量:2
12
作者 赵宁 陈智坤 +3 位作者 杨朋飞 王瑞多 张计育 李永荣 《农业工程学报》 北大核心 2025年第5期209-216,共8页
薄壳山核桃是一种重要的经济坚果,由于品种繁多,对其进行快速科学的鉴定是进行种质资源保护与品种选育的重要基础。为了实现薄壳山核桃品种的快速鉴定,该研究针对品种鉴定提出了基于尺度交互蒸馏网络的薄壳山核桃品种识别方法,通过学习... 薄壳山核桃是一种重要的经济坚果,由于品种繁多,对其进行快速科学的鉴定是进行种质资源保护与品种选育的重要基础。为了实现薄壳山核桃品种的快速鉴定,该研究针对品种鉴定提出了基于尺度交互蒸馏网络的薄壳山核桃品种识别方法,通过学习薄壳山核桃的可判别性特征实现品种鉴定。研究选择波尼等12种薄壳山核桃,建立了9048张实拍图像的品种识别数据集;针对薄壳山核桃图片取样中距离变化导致的目标尺度多样性问题,设计了一种全局-局部特征协同学习方案,用于提取尺度不变特征;与此同时,该研究结合尺度知识蒸馏方案,通过训练提取的不同尺度数据进行预测保证模型训练的有效性。结果表明,通过训练该方法对上述12个品种的薄壳山核桃品种识别准确率均达到了96.98%,显著提高了薄壳山核桃的品种鉴定准确率。该研究开发的薄壳山核桃品种自动识别模型对于未来果实鉴定及产品分选提供了技术手段。 展开更多
关键词 薄壳山核桃 品种鉴定 尺度交互蒸馏 多尺度上下文注意融合 知识蒸馏
在线阅读 下载PDF
基于卷积和Transformer的矿物拉曼光谱分类方法 被引量:1
13
作者 耿磊 仇怀志 +2 位作者 肖志涛 张芳 吴骏 《天津工业大学学报》 北大核心 2025年第1期53-61,共9页
针对矿物类别众多、存在环境杂质等干扰信息以及部分拉曼光谱存在相似性等问题,结合拉曼光谱时域和频域上多尺度特征信息,提出一种基于卷积结构和自注意力结构的双分支分类网络RT-Net(Residual-Transformer Net)。该网络利用卷积块搭建... 针对矿物类别众多、存在环境杂质等干扰信息以及部分拉曼光谱存在相似性等问题,结合拉曼光谱时域和频域上多尺度特征信息,提出一种基于卷积结构和自注意力结构的双分支分类网络RT-Net(Residual-Transformer Net)。该网络利用卷积块搭建局部特征提取模块,引入通道注意力增强局部特征提取能力;利用自注意力结构学习拉曼光谱频域中的双向依赖关系来提取全局特征信息,由注意力融合模块进行多尺度特征融合用以分类。实验结果表明:RT-Net实现了对于1321类矿物拉曼光谱快速准确的分类,分类准确率达到90.31%;此外,在精准率、召回率和F1得分3个评估指标上分别达到了0.8781、0.9066和0.8972,进一步验证了RT-Net的有效性。 展开更多
关键词 矿物分类 拉曼光谱 频域 注意力机制 多尺度融合
在线阅读 下载PDF
二维随机裂缝介质横波散射衰减数值研究 被引量:1
14
作者 周浩 符力耘 +2 位作者 曹辉 俞军 邓继新 《地球物理学报》 北大核心 2025年第2期668-679,共12页
声波衰减对裂缝识别更为敏感,因此在非常规油气勘探和压裂监测等领域有着广泛的应用前景.裂缝型油气储层非均质性强,散射效应显著,但长波长假设下的等效介质理论无法准确描述散射导致的声波衰减.本研究利用交错网格有限差分方法,在二维... 声波衰减对裂缝识别更为敏感,因此在非常规油气勘探和压裂监测等领域有着广泛的应用前景.裂缝型油气储层非均质性强,散射效应显著,但长波长假设下的等效介质理论无法准确描述散射导致的声波衰减.本研究利用交错网格有限差分方法,在二维随机裂缝介质上模拟了标量横波(SH波)的传播,并研究了裂缝尺度、密度以及交叉对横波散射衰减的影响.研究发现,裂缝长度l_(c)、裂缝密度γ和背景介质波数k_(0)可定量表征散射衰减.裂缝长度l_(c)小于背景介质波长λ_(0)的1/30时,可以忽略散射衰减;当k_(0)l_(c)/2<1时,衰减随着k_(0)l_(c)/2的增大而增大,反之,衰减随着k_(0)l_(c)/2的增大而减小;当l_(c)≈λ_(0)/3时,衰减最强.裂缝交叉会加强k_(0)l_(c)/2<1时的散射衰减,而减弱k_(0)l_(c)/2>1时的衰减.这种定量关系有助于理解多尺度裂缝的横波散射衰减特征,对声波测井和勘探地震中的裂缝识别问题具有实用价值. 展开更多
关键词 声波衰减 裂缝识别 裂缝散射 谱比法 多尺度裂缝
在线阅读 下载PDF
基于特征增强的双重注意力去雾网络 被引量:1
15
作者 陈海秀 黄仔洁 +5 位作者 陆康 陆成 何珊珊 房威志 卢海涛 陈子昂 《电光与控制》 北大核心 2025年第1期15-20,67,共7页
针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB... 针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB充分融合不同尺度的特征,实现均匀去雾,引入双重注意力实现信息跨通道与空间交互,保证模型性能和抑制噪声特征。使用RESIDE数据集对网络进行训练和测试。实验结果表明,所提算法在主观视觉和客观评价指标上均有优异表现,能有效地提升网络的特征提取能力,实现对不同场景雾图的色彩恢复,增强图像的对比度和清晰度。 展开更多
关键词 图像去雾 特征增强 并行分支结构 多尺度映射 注意力机制
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
16
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于层次分段多尺度散布熵的矿井提升机主轴承故障诊断 被引量:2
17
作者 董荣伟 杨宁 《机械设计》 北大核心 2025年第1期94-100,共7页
针对层次多尺度散布熵(HMDE)粗粒化过程中存在的信息泄露及熵值计算不稳定的问题,文中提出了层次分段多尺度散布熵(HPMDE)的概念。结合极限学习机(ELM),提出了矿井提升机故障诊断的HPMDE-ELM方法。HPMDE采用分段粗粒化方式,解决了HMDE... 针对层次多尺度散布熵(HMDE)粗粒化过程中存在的信息泄露及熵值计算不稳定的问题,文中提出了层次分段多尺度散布熵(HPMDE)的概念。结合极限学习机(ELM),提出了矿井提升机故障诊断的HPMDE-ELM方法。HPMDE采用分段粗粒化方式,解决了HMDE粗粒化过程中存在的不足。根据仿真信号对HPMDE的参数选择进行了分析,并与HMDE的结果进行了对比分析,结果表明:HPMDE的计算结果更稳定。通过矿井提升机驱动系统主轴承的故障诊断实例对HPMDE进行了验证和对比分析,结果表明:HPMDE对不同故障的可区分性更强,诊断精度更高。 展开更多
关键词 矿井提升机 故障诊断 层次多尺度散布熵 分段
在线阅读 下载PDF
煤矿综采工作面人员入侵危险区域智能识别方法 被引量:2
18
作者 毛清华 翟姣 +2 位作者 胡鑫 苏毅楠 薛旭升 《煤炭学报》 北大核心 2025年第2期1347-1361,共15页
为解决煤矿综采工作面人员尺度多变、危险区域动态变化等因素导致人员入侵危险区域时,视频AI识别准确率不高的问题,提出一种RSCA-YOLOv8s与危险区域自动划分的煤矿综采工作面人员入侵危险区域智能识别方法。针对综采工作面人员识别准确... 为解决煤矿综采工作面人员尺度多变、危险区域动态变化等因素导致人员入侵危险区域时,视频AI识别准确率不高的问题,提出一种RSCA-YOLOv8s与危险区域自动划分的煤矿综采工作面人员入侵危险区域智能识别方法。针对综采工作面人员识别准确率低问题,在YOLOv8s模型基础上引入RFAConv-SE(Squeeze-and-Excitation with Receptive-Field Attention Convolution)与CCNet(Criss-Cross Attention Network)注意力模块提高复杂背景图像中模型对全局及上下文信息的捕获能力,C2f模块融合Res2Net网络提高模型的多尺度和小目标人员特征提取能力,通过改进的SPCASFF(Adaptive Structure Feature Fusion with Sub-Pixel Convolution layer)模块提升模型对多尺度人员特征的自适应融合能力。针对综采工作面摄像头跟随液压支架动态变化导致危险区域在视场范围内动态变化的问题,提出一种基于护帮板、挡煤板标志性目标关键特征点提取的危险区域自动划分方法。针对危险区域不规则变化与基于重叠度的判断方法参数设置困难的问题,提出一种基于射线法判断人员与危险区域像素坐标位置关系的人员入侵危险区域精准识别方法。通过消融试验、RSCA-YOLOv8s与YOLOv5s、YOLOv8-SPDConv等方法对比试验,以及综采工作面7组多场景危险区域自动划分与5组人员入侵危险区域识别试验测试,结果表明:RSCA-YOLOv8s的人员识别方法准确率更高,达到了97.2%,相较基线模型mAP@0.5提高了1.1%,mAP@0.5:0.95提高了2.5%,对小目标人员具有更准确的识别能力和更高的识别精度;该方法危险区域自动划分的平均准确率为97.285%,人员入侵危险区域的判别准确率为98%以上。 展开更多
关键词 综采工作面 人员入侵 危险区域 多尺度目标 YOLOv8s 区域自动划分
在线阅读 下载PDF
MC-Res2UNet网络在盐体识别中的应用 被引量:1
19
作者 王新 张傲 +1 位作者 张薇 陈同俊 《石油地球物理勘探》 北大核心 2025年第1期21-29,共9页
精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改... 精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改进。首先,使用Res2Net网络作为编码器提取盐体特征信息;然后,在解码层中的卷积之后引入CBAM注意力模块重新分配盐体空间信息和通道信息,抑制不重要的信息;最后,利用多尺度特征融合模块融合空间信息和语义信息,提高盐体识别精度。将文中提出的MC-Res2UNet模型用于TGS盐体数据集进行验证,像素准确率可达到96.6%,交并比可达到86.8%,优于传统的DeepLabV3+、DANet等语义分割方法,对地下盐体有更好的识别效果。 展开更多
关键词 盐体识别 U-Net 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于UMS-YOLO v7的面向样本不均衡的水下生物多尺度目标检测方法 被引量:1
20
作者 张明华 黄基萍 +2 位作者 宋巍 肖启华 赵丹枫 《农业机械学报》 北大核心 2025年第1期388-396,409,共10页
针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野... 针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野上捕获多尺度目标特征,使得提取的特征信息更加全面;其次,使用轻量级的上采样算子融合上下文信息,提高模型对目标的特征学习能力;最后,通过结合Wise-IoU和归一化Wasserstein距离两种相似性度量,提高了不同尺度目标的定位精度,同时降低了多尺度样本分布不均衡对模型的影响。实验结果表明,该模型相较于当前其他模型在检测精度方面表现出明显的提升,在RUOD和DUO数据集上平均精度均值分别达到64.5%和68.9%。与YOLO v7模型相比,UMS-YOLO v7提高了多种尺度目标检测精度,在DUO数据集上,针对大、中、小3种尺度目标平均精度均值分别提升8.3、4.8、12.5个百分点,其中小目标提升效果最为显著。与现有的其他模型相比,改进的模型具有更高的检测精度,更适用于水下生物多尺度目标检测任务,并且针对不同数据分布的样本具有泛化性和鲁棒性。 展开更多
关键词 水下生物 多尺度目标检测 YOLO v7 空洞卷积 上采样算子 相似性度量
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部