为减少温室气体的排放,以风电为代表的清洁能源大规模接入电网。如何消纳高占比、波动剧烈的风电,成为现代电力系统所面临的重要问题。在此背景下,将多端柔性直流输电系统(VSC based multi-terminal HVDC,VSCMTDC)对功率的灵活调节能力...为减少温室气体的排放,以风电为代表的清洁能源大规模接入电网。如何消纳高占比、波动剧烈的风电,成为现代电力系统所面临的重要问题。在此背景下,将多端柔性直流输电系统(VSC based multi-terminal HVDC,VSCMTDC)对功率的灵活调节能力纳入安全约束机组组合(security-constrained unit commitment,SCUC)问题中进行调控。设计日前机组组合、短期实时调节和滚动重调节三段式配合的调度框架,并基于列与约束生成算法(column-andconstraint generation,C&CG)设计三层迭代求解方法。通过该方法解决了传统二阶段鲁棒性机组组合偏于保守的弊端,有效提高了风电消纳。为了充分利用VSC换流站能独立调节有功、无功的优势,在SCUC结果的基础上进行无功电压优化,并基于Benders分解算法进行求解,有效降低了系统网损。最后,将所提模型应用于改进IEEE 30节点系统算例,验证模型的有效性和可行性。展开更多
针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故...针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故障特征,得出边界元件对高频信号的阻滞作用;其次,利用经验模态分解(empirical mode decomposition,EMD)对功率进行分解,得到本征模态函数(intrinsic mode function,IMF)分量,将其能量值作为故障特征量训练由卷积神经网络(convolutional neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的CNN-BiGRU网络;然后,采用开普勒优化算法(Kepler optimization algorithm,KOA)和注意力机制(attention mechanism,AM)对CNN-BiGRU网络进行改进,实现MMC-MTDC的故障诊断;最后,在PSCAD/EMTDC中搭建仿真模型。结果表明,该方法不仅可以实现母线故障和线路故障的检测,还可以在满足保护可靠性和速动性的前提下,解决高阻故障保护易拒动的问题。展开更多
文摘为减少温室气体的排放,以风电为代表的清洁能源大规模接入电网。如何消纳高占比、波动剧烈的风电,成为现代电力系统所面临的重要问题。在此背景下,将多端柔性直流输电系统(VSC based multi-terminal HVDC,VSCMTDC)对功率的灵活调节能力纳入安全约束机组组合(security-constrained unit commitment,SCUC)问题中进行调控。设计日前机组组合、短期实时调节和滚动重调节三段式配合的调度框架,并基于列与约束生成算法(column-andconstraint generation,C&CG)设计三层迭代求解方法。通过该方法解决了传统二阶段鲁棒性机组组合偏于保守的弊端,有效提高了风电消纳。为了充分利用VSC换流站能独立调节有功、无功的优势,在SCUC结果的基础上进行无功电压优化,并基于Benders分解算法进行求解,有效降低了系统网损。最后,将所提模型应用于改进IEEE 30节点系统算例,验证模型的有效性和可行性。