期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
1
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 fault diagnosis multi-manifold learning particle SWARM optimization support vector machine
在线阅读 下载PDF
Fault diagnosis method of link control system for gravitational wave detection 被引量:1
2
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
在线阅读 下载PDF
A bearing fault diagnosis method based on sparse decomposition theory 被引量:1
3
作者 张新鹏 胡茑庆 +1 位作者 胡雷 陈凌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1961-1969,共9页
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat... The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals. 展开更多
关键词 fault diagnosis sparse decomposition dictionary learning representation error
在线阅读 下载PDF
基于层次分段多尺度散布熵的矿井提升机主轴承故障诊断 被引量:2
4
作者 董荣伟 杨宁 《机械设计》 北大核心 2025年第1期94-100,共7页
针对层次多尺度散布熵(HMDE)粗粒化过程中存在的信息泄露及熵值计算不稳定的问题,文中提出了层次分段多尺度散布熵(HPMDE)的概念。结合极限学习机(ELM),提出了矿井提升机故障诊断的HPMDE-ELM方法。HPMDE采用分段粗粒化方式,解决了HMDE... 针对层次多尺度散布熵(HMDE)粗粒化过程中存在的信息泄露及熵值计算不稳定的问题,文中提出了层次分段多尺度散布熵(HPMDE)的概念。结合极限学习机(ELM),提出了矿井提升机故障诊断的HPMDE-ELM方法。HPMDE采用分段粗粒化方式,解决了HMDE粗粒化过程中存在的不足。根据仿真信号对HPMDE的参数选择进行了分析,并与HMDE的结果进行了对比分析,结果表明:HPMDE的计算结果更稳定。通过矿井提升机驱动系统主轴承的故障诊断实例对HPMDE进行了验证和对比分析,结果表明:HPMDE对不同故障的可区分性更强,诊断精度更高。 展开更多
关键词 矿井提升机 故障诊断 层次多尺度散布熵 分段
在线阅读 下载PDF
面向民航飞机故障安全诊断的知识图谱构建方法 被引量:2
5
作者 朱江 谢涛 《中国安全生产科学技术》 北大核心 2025年第3期186-194,共9页
为更好地管理和利用民航飞机设备故障维修知识,提高飞机故障安全诊断的决策效率,提出融合数据增强和多尺度注意力机制的飞机设备故障知识图谱构建方法。首先,创建基于语义相似性的实体集构建模式,结合余弦相似度计算扩充数据样本。其次... 为更好地管理和利用民航飞机设备故障维修知识,提高飞机故障安全诊断的决策效率,提出融合数据增强和多尺度注意力机制的飞机设备故障知识图谱构建方法。首先,创建基于语义相似性的实体集构建模式,结合余弦相似度计算扩充数据样本。其次,采用多尺度注意力对BERT-BiLSTM-CRF模型进行优化改进,以提升知识抽取时局部和全局信息的关注度。最后,利用Neo4j图数据库搭建飞机设备故障知识图谱,并辅助开发智能问答系统用于决策推荐。研究结果表明:所提方法有效解决模型在小样本数据上的局限性,且故障文本知识抽取性能较基准模型显著提升,实体识别精确率、召回率和F 1分别达到92.59%,94.68%和93.62%,为搭建知识图谱提供可靠信息。研究结果可为实现飞机故障的高效诊断和预防飞机事故风险提供参考。 展开更多
关键词 飞机设备 故障诊断 数据增强 多尺度注意力 知识图谱 智能问答
在线阅读 下载PDF
基于多层域适应的无标签数据故障诊断方法 被引量:1
6
作者 王进花 刘瑞 曹洁 《北京航空航天大学学报》 北大核心 2025年第4期1185-1194,共10页
在工业生产中,由于源域数据和目标域数据分布有差异且有标签的故障数据量较少,以至于现有的域适应轴承故障诊断方法大多精度不高。基于此,提出多层域适应神经网络(MDANN)故障诊断方法,用于无标签数据的滚动轴承故障诊断。使用小波包分... 在工业生产中,由于源域数据和目标域数据分布有差异且有标签的故障数据量较少,以至于现有的域适应轴承故障诊断方法大多精度不高。基于此,提出多层域适应神经网络(MDANN)故障诊断方法,用于无标签数据的滚动轴承故障诊断。使用小波包分解与重构(WPT)对原始振动信号进行处理,以降低信号冗余并避免关键信号特征遗失;利用多核最大均值差异(MKMMD)算法对输入特征值进行差异计算,并通过反向传播更新多层域适应神经网络的参数,使其能够提取域不变特征;为保证无标签目标域数据可以正常参与网络训练,使用最大概率标签作为真实标签的伪标签策略,解决目标域无标签数据无法训练问题,增强模型可靠诊断知识的获取。采用2个公开数据集CWRU和PU进行验证。实验结果表明:所提方法与常见的域适应方法对比具有更高的诊断精度,说明该方法能够有效地学习可迁移特征,拟合2个数据集之间的数据分布差异。 展开更多
关键词 滚动轴承 故障诊断 迁移学习 多层域适应 伪标签策略
在线阅读 下载PDF
基于多尺度卷积自编码器的船舶逆变器故障诊断 被引量:1
7
作者 崔博文 张思远 《舰船科学技术》 北大核心 2025年第3期135-140,共6页
为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断... 为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断。首先,利用数据增强方法来增强数据集;其次,根据数据特点设计可以提取局部细节和整体结构信息的多尺度卷积特征融合模块,并在编码器中引入该模块,形成特征提取模型;最后,利用全连接神经网络对模型输出的数据特征进行分类,根据分类结果实现故障诊断。实验结果表明,所提出的方法具有优越的数据特征提取性能及噪声鲁棒性能,可以实现船舶逆变器开关器件开路故障诊断。 展开更多
关键词 船舶逆变器 故障诊断 多尺度特征融合 卷积自编码器
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
8
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法
9
作者 王玉静 叶柏宏 +2 位作者 康守强 刘连胜 孙宇林 《仪器仪表学报》 北大核心 2025年第6期317-329,共13页
针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一... 针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一维信号转换为二维图像,构建时频图数据集;利用改进的数据增强方法对不平衡数据集进行均衡处理;引入有效的通道注意力机制,并通过可学习的权重加权残差分支的输出,以增强模型对不同输入信号残差信息的适应性和对数据关键特征的提取能力;通过改进的多模态变分自编码器挖掘多源信号之间的互补信息进行特征融合,并采用焦点损失函数作为训练损失函数,使模型能够更关注错分频率较高的类别样本,构建多用户个性化本地模型;服务器端聚合用户端本地模型参数并更新全局模型,通过联邦学习保障用户端本地的孤岛隐私数据,从而对多源不平衡数据下谐波减速器进行故障诊断。通过搭建谐波减速器信号采集实验平台进行验证,所提方法能够有效提取谐波减速器多源不平衡数据的特征并实现信息融合,平均故障诊断准确率为98.8%,性能优于所对比的方法。 展开更多
关键词 数据不平衡 多源信息融合 联邦学习 谐波减速器 故障诊断
在线阅读 下载PDF
强噪声环境下基于MSDCNN的滚动轴承故障诊断方法
10
作者 雷春丽 史佳硕 +3 位作者 马淑珍 缪成翔 万会元 李建华 《北京航空航天大学学报》 北大核心 2025年第9期2906-2915,共10页
针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过... 针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过宽卷积核进一步提取特征;提出一种多尺度动态卷积结构,利用改进的通道注意力机制,对不同大小的卷积核提取的特征信息赋予不同的权重;设计一种自校准空间注意力机制(SCSAM),将提取的特征信息输入到空间注意力机制中,捕获不同区域的重要程度;通过小卷积核进一步提取特征,利用Softmax分类器进行故障类别分类。使用2种不同数据集验证所提模型的故障诊断性能,实验结果表明:与多尺度深度卷积神经网络(MSD-CNN)、宽卷积核卷积神经网络(WKCNN)等智能模型相比,所提模型在强噪声背景下具有更高的分类精度、更好的泛化能力和更强的鲁棒性。 展开更多
关键词 故障诊断 傅里叶变换 多尺度动态卷积 注意力机制 滚动轴承
在线阅读 下载PDF
基于MS1DCNN-BOA-SVM的智能液压系统故障诊断方法
11
作者 闫锋 肖成军 +2 位作者 孙一伟 孙有朝 谭忠睿 《机床与液压》 北大核心 2025年第8期174-181,共8页
针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构... 针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构建特征向量;然后,利用贝叶斯搜索优化SVM进行分类识别,构建故障诊断模型;最后,对模型进行训练。结果表明:该模型对柱塞泵和蓄能器的故障诊断准确率分别为99.63%、99.17%;与MS1DCNN、1DCNN、SVM模型相比,该模型在液压系统故障诊断方面具有高准确率、高可靠性和强泛化能力的优势。 展开更多
关键词 液压系统 多尺度卷积神经网络 支持向量机 贝叶斯搜索优化 故障诊断
在线阅读 下载PDF
基于多通道的二维递归融合图和LMCR模型的NPC型三电平逆变器故障诊断
12
作者 毕贵红 王小玲 +3 位作者 陈冬静 赵四洪 陈世语 陈仕龙 《高电压技术》 北大核心 2025年第3期1269-1283,I0002,I0003,共17页
中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结... 中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结合了多通道的二维递归融合图和轻量化多尺度残差(lightweightmultiscale convolutional residuals,LMCR)网络。首先,通过仿真获取三相电流信号作为故障信号;再利用递归图(recurrence plot,RP)将三相电流信号分别转化为二维图并进行多通道融合,以捕捉时间序列中的周期性、突变点和趋势等特征;最后,将递归融合图作为输入,输入到LMCR模型中进行故障识别,LMCR模型整合多级Inception结构和残差网络,用于提取不同尺度的特征并融合这些特征,从而保证网络的梯度消失和爆炸。实验结果显示,该方法在IGBT故障识别中表现出色,无噪声环境下平均识别准确率达100%,噪声环境中也达到了92.53%,充分证明了该方法具有较强的特征提取能力和优异的抗噪性能。 展开更多
关键词 NPC型三电平逆变器 开路故障 递归图 深度学习 多尺度特征
在线阅读 下载PDF
基于GASF与MSCAM-DenseNet的小样本齿轮故障诊断方法
13
作者 史丽晨 张鹏 +1 位作者 王海涛 周星宇 《计算机集成制造系统》 北大核心 2025年第8期3033-3045,共13页
针对小样本条件下所得样本不足,特征未能有效提取导致诊断精度下降的问题,提出一种GASF与MSCAM-DenseNet相结合的小样本齿轮故障诊断方法。首先,运用格拉姆角和域(GASF)将多源振动信号变换为二维特征,采用二维离散小波变换(2D-DWT)重构... 针对小样本条件下所得样本不足,特征未能有效提取导致诊断精度下降的问题,提出一种GASF与MSCAM-DenseNet相结合的小样本齿轮故障诊断方法。首先,运用格拉姆角和域(GASF)将多源振动信号变换为二维特征,采用二维离散小波变换(2D-DWT)重构多源特征。其次,由于一般的密集连接卷积网络(DenseNet)不具备识别多尺度特征的能力,因而在DenseNet中引入多尺度通道注意力机制(MSCAM),提出一种改进网络模型,即MSCAM-DenseNet。最后,以重构后的GASF作为MSCAM-DenseNet的输入,待特征识别完成后,由网络分类器完成故障特征分类。采用实验室行星齿轮数据集和东南大学齿轮箱数据集对所提模型验证,并与其他诊断模型进行对比。实验结果证明,所提方法在小样本、变工况条件下具有较高的故障识别准确率,较强的泛化能力和抗噪能力。 展开更多
关键词 齿轮 小样本故障诊断 格拉姆角和域 二维离散小波变换 多尺度通道注意力机制
在线阅读 下载PDF
基于多尺度动态卷积和GRU的轴承故障诊断
14
作者 董绍江 彭银山 +1 位作者 邹松 黄翔 《组合机床与自动化加工技术》 北大核心 2025年第3期150-154,共5页
针对传统轴承故障诊断过程中忽略轴承振动信号的关联时间维度信息的问题,提出了基于多尺度动态扩张卷积神经网络(MSDDCNN)和门控循环单元网络(GRU)的轴承故障诊断方法。首先利用不同尺寸宽卷积核从各个维度捕捉振动信号多维特征以增大... 针对传统轴承故障诊断过程中忽略轴承振动信号的关联时间维度信息的问题,提出了基于多尺度动态扩张卷积神经网络(MSDDCNN)和门控循环单元网络(GRU)的轴承故障诊断方法。首先利用不同尺寸宽卷积核从各个维度捕捉振动信号多维特征以增大感受野;其次引入动态加权层自适应选择卷积核尺度的大小并自动地给予特征序列中的不同部分不同的权重,更加充分提升特征表示的能力;最后利用门控循环单元充分提取振动信号中不同尺度的时序特征,以加强各个维度间前后时间维度关联信息。实验结果表明,所提方法在PU和JNU公开数据集上平均准确率分别为98.79%和98.65%。为验证所提网络模型诊断有效性,所提方法在某公司自制的轴承故障数据集(CME)也表现出较高的准确率和较大抗噪声能力,为有效诊断旋转部件故障提供了实际依据。 展开更多
关键词 多尺度 动态卷积 扩张卷积 GRU 故障诊断
在线阅读 下载PDF
基于小波包分解重构的变工况行星齿轮箱故障诊断
15
作者 史丽晨 周星宇 杨超 《制造技术与机床》 北大核心 2025年第7期50-57,共8页
针对在变工况环境下齿轮箱故障振动数据复杂程度高和故障特征难以提取的问题,提出一种基于小波包分解的三通道数据融合和多尺度残差网络的变工况齿轮箱故障诊断方法。该方法利用小波包分解重构将齿轮箱三通道振动信号进行融合,并利用格... 针对在变工况环境下齿轮箱故障振动数据复杂程度高和故障特征难以提取的问题,提出一种基于小波包分解的三通道数据融合和多尺度残差网络的变工况齿轮箱故障诊断方法。该方法利用小波包分解重构将齿轮箱三通道振动信号进行融合,并利用格拉姆角和图像编码方法转化为二维图像;使用多尺度卷积结构与残差结构相结合的网络结构对变工况齿轮箱故障进行诊断;引入高效通道注意力机制,增强不同尺度卷积下提取到不同特征的敏感性,从而提高模型的表征能力和分类性能。实验结果表明,所提方法在定转速、变负载故障数据下诊断准确率可达到99.59%,定负载、变转速故障数据下诊断准确率可达到98.58%,证明该方法可以有效地弱化运行中变转速和变负载对故障特征的影响。 展开更多
关键词 小波包分解 多尺度卷积 变工况 故障诊断 齿轮箱
在线阅读 下载PDF
基于多任务学习的电机声信号域自适应故障诊断方法 被引量:2
16
作者 王永淇 肖登宇 +2 位作者 胡嫚 秦毅 吴飞 《电子测量技术》 北大核心 2025年第1期8-19,共12页
由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题... 由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题:常用域自适应框架下会出现多任务梯度冲突。同时,现有方法极少研究复杂运行状态之间的迁移任务。因此本文提出了AMDA电机故障诊断方法以解决上述问题。AMDA方法利用多层一维卷积层、批量归一化层和池化层构成的特征提取器,提取源域和目标域的高阶特征;之后结合使用基于对抗的方法和基于分布差异度量的方法,减小源域和目标域数据特征的分布差异;最后引入基于梯度对齐的多任务学习方法,对故障分类器、域判别器和分布差异度量三个任务进行平衡和优化,减小多任务梯度之间的冲突,最终得到基于多任务学习的电机声信号的域自适应故障诊断模型。使用所提出的AMDA方法在多个试验设置下进行跨运行状态故障诊断试验,试验结果表明,AMDA方法在基于声信号的跨运行状态电机故障诊断试验中,完成了稳定运行状态(Stable)、启动运行状态(Start)和循环运行状态(NEDC)之间的迁移任务,最高诊断正确率可达91.47%。同时,AMDA方法在两个对比试验中,性能均显著高于其他方法,具有一定的研究价值和工程应用价值。 展开更多
关键词 电动机 声信号 故障诊断 域自适应 多任务学习
在线阅读 下载PDF
基于RIME-VMD的高速列车横向减振器故障诊断 被引量:4
17
作者 秦永峰 李刚 +1 位作者 齐金平 王建帅 《铁道科学与工程学报》 北大核心 2025年第3期942-953,共12页
为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(I... 为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(IMF)分量的个数和惩罚因子的最优参数组合;其次,计算各个IMFs分量的峭度值与相关性系数,再分别选取峭度值较大的前4阶IMF分量,并在峭度值较大的4个IMFs分量中选取相关性系数较高的前3阶IMFs进行信号重构降噪;最后,计算多尺度的奇异熵、样本熵、排列熵作为故障特征值,并结合t分布随机近邻嵌入(t-SNE)算法降维去除冗余特征信息,将降维融合后的特征矩阵逐一输入到支持向量机(SVM)中,从而实现对高速列车横向减振器不同故障部位的识别。仿真实验结果表明:相较于灰狼算法(GWO)优化变分模态分解(VMD)的方法,RIME-VMD方法利用霜冰算法高效的搜索与开发能力,可以更快速寻得高速列车不同工况下,变分模态分解中分解层数和惩罚因子参数的全局最优组合,提高了VMD分解信号的鲁棒性,采用信号重构的方法可以有效提取故障特征,实现高速列车横向减振器故障的高效、准确识别。原始变分模态分解(VMD)方法虽然分解速度较快,但原始VMD参数的人工试错成本更高,不能满足高速列车故障诊断的要求。研究结果可为高速列车横向减振器故障诊断和安全运营进一步优化提供参考。 展开更多
关键词 转向架 变分模态分解 霜冰算法 故障诊断 多尺度奇异熵
在线阅读 下载PDF
多尺度迁移学习的轴承故障诊断 被引量:2
18
作者 尹洪申 刘文峰 +1 位作者 俞啸 丁恩杰 《机械设计与制造》 北大核心 2025年第1期10-14,共5页
针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成... 针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成不同频率的本征模态函数(Intrinsic Mode Function,IMF);其次将得到的不同频率的IMF与卷积神经网络中不同尺寸卷积核提取到的丰富特征互补构建多尺度特征融合;采用联合最大平均差异(Joint Maximum Mean Discrep⁃ancy,JMMD)特征迁移的方法使源域与目标域联合分布差异最小化,然后通过多尺度融合模型进行分类识别;最后在凯斯西储大学轴承数据集和江南大学数据集对该方法进行了验证。实验结果证明该模型在两种不同工况和型号的轴承数据集中均取得较高的准确率,表现出模型良好的泛化能力。 展开更多
关键词 振动信号 故障诊断 多尺度特征融合 迁移学习 联合最大平均差异 特征迁移
在线阅读 下载PDF
复合多尺度包络模糊熵在滚动轴承故障诊断中的应用 被引量:2
19
作者 李姜宏 郑近德 +2 位作者 潘海洋 程健 童靳于 《振动与冲击》 北大核心 2025年第9期274-281,共8页
模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE... 模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE)作为新的复杂性度量指标。进一步利用复合粗粒化的方式对时间序列的包络信号进行复合多尺度处理,提出了复合多尺度包络模糊熵(composite multi-scale envelope fuzzy entropy, CMEFE),旨在全面揭示信号的故障特征。此外,通过仿真信号验证了CMEFE能够区分不同类型的模拟信号,对比其他非线性动力学方法,结果表明提出的方法对于不同模拟信号的区分效果更为显著。在此基础上,提出一种基于复合多尺度包络模糊熵与萤火虫优化支持向量机的滚动轴承故障诊断方法。与现有方法进行对比,验证了该方法的可行性与优越性。 展开更多
关键词 模糊熵(FE) 包络模糊熵(EFE) 多尺度模糊熵 复合多尺度包络模糊熵(CMEFE) 萤火虫优化支持向量机 滚动轴承故障诊断
在线阅读 下载PDF
基于深度学习的旋转机械大数据智能故障诊断方法 被引量:3
20
作者 宫文峰 张美玲 陈辉 《计算机集成制造系统》 北大核心 2025年第1期264-277,共14页
深度学习作为一种智能高效的模式识别技术,已得到基于大数据驱动的机械装备故障诊断领域学者的广泛关注。为了更加有效地从多传感器原始故障数据中提取出故障特征,解决单一诊断算法提取时序数据特征时的信息丢失问题,提出一种基于改进... 深度学习作为一种智能高效的模式识别技术,已得到基于大数据驱动的机械装备故障诊断领域学者的广泛关注。为了更加有效地从多传感器原始故障数据中提取出故障特征,解决单一诊断算法提取时序数据特征时的信息丢失问题,提出一种基于改进的长短期记忆循环神经网络-全局均值池化卷积神经网络(LSTM-GCNN)的深度循环卷积神经网络新算法,用于机械装备大数据的故障智能诊断。该算法首先运用长短时记忆循环神经网络(LSTM)从多通道原始数据中提取时间关联性记忆特征,然后再将特征数据输入到一维卷积神经网络(1D-CNN)中进行微小差异特征辨识,并且为了减少模型参数量和提高算法检测速度,设计了一个一维全局均值池化层用于代替传统1D-CNN算法中的全连接层结构。通过将提出的算法用于滚动轴承在1马力、2马力和3马力多种负载工况下采集的3通道振动信号数据进行诊断验证,分别得到100%、99.85%和99.78%的诊断准确率,实验结果相比传统的DNN、LSTM和CNN算法具有更加优越的诊断性能;对齿轮箱在空载和承载两种运行工况下的8通道原始数据进行故障诊断的准确率分别高达99.93%和99.8%,具有良好的迁移通用性能。 展开更多
关键词 智能故障诊断 深度学习 循环神经网络 卷积神经网络 多传感器
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部