期刊文献+
共找到2,673篇文章
< 1 2 134 >
每页显示 20 50 100
A combined algorithm of K-means and MTRL for multi-class classification 被引量:2
1
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine LEARNING multi-class classification K-MEANS multi-TASK RELATIONSHIP LEARNING (MTRL) OVER-FITTING
在线阅读 下载PDF
Multi-label dimensionality reduction and classification with extreme learning machines 被引量:9
2
作者 Lin Feng Jing Wang +1 位作者 Shenglan Liu Yao Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期502-513,共12页
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc... In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. 展开更多
关键词 multi-LABEL dimensionality reduction kernel trick classification.
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
3
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
4
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
在线阅读 下载PDF
Multi-criteria classification approach with polynomial aggregation function and incomplete certain information 被引量:1
5
作者 Wang Jianqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期546-550,共5页
The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classific... The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classification method with incomplete certain information and polynomial aggregation function is proposed. First, linear programming is constructed by classification to reference alternative set (assignment examples) and incomplete certain information on criterion's weights. Then the coefficient of the polynomial aggregation function and thresholds of categories are gained by solving the linear programming. And the consistency index of alternatives is obtained, the classification of the alternatives is achieved. The certain criteria's values of categories and uncertain criteria's values of categories are discussed in the method. Finally, an example shows the feasibility and availability of this method. 展开更多
关键词 multi-criteria decision-making incomplete certain information polynomial function classification.
在线阅读 下载PDF
Digital modulation classification using multi-layer perceptron and time-frequency features
6
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification Time-frequency feature Time-frequency distribution multi-layer perceptron.
在线阅读 下载PDF
A review of addressing class noise problems of remote sensing classification 被引量:2
7
作者 FENG Wei LONG Yijun +1 位作者 WANG Shuo QUAN Yinghui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期36-46,共11页
The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the... The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given. 展开更多
关键词 class noise label noise mislabeled classification ensemble learning remote sensing
在线阅读 下载PDF
Building up Multi-Layered Perceptrons as Classifier System for Decision Support
8
作者 Cat Jun, Zhai Fan & Feng Shan (Inst. of Sys. Eng., Huazhong University of Science and Technology, Wuhan 430074, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期32-39,共8页
This paper focuses on some application issues in m.multi-layered perceptrons researches. The following problem areas are discussed: (1) the classification capability of multi-layered perceptrons; (2) theself-configura... This paper focuses on some application issues in m.multi-layered perceptrons researches. The following problem areas are discussed: (1) the classification capability of multi-layered perceptrons; (2) theself-configuration algorithm for facilitating the design of the neural nets' structure;and,finally (3) the application of the fast BP algorithm to speed up the learning procedure. Some experimental results with respect to the application of multi-layered perceptrons as classifier systems in the comprehensive evaluation of Chinese large cities are presented. 展开更多
关键词 multi-layered perceptron Decision support system classification ability SELF-CONFIGURATION Comprehensive evaluation.
在线阅读 下载PDF
基于Multi-class SVM的车辆换道行为识别模型研究 被引量:17
9
作者 陈亮 冯延超 李巧茹 《安全与环境学报》 CAS CSCD 北大核心 2020年第1期193-199,共7页
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹... 自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。 展开更多
关键词 安全工程 多分类支持向量机 NGSIM数据 车辆换道识别
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
10
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Self-configuring scheduling scheme for IPv6 traffic with multiple QoS classes
11
作者 陈宇 张乃通 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期377-381,共5页
This paper proposes a new queuing model and adaptive scheduling scheme which realizes multi-class QoS mechanism under DiffServ architecture. The queuing model is composed of two parallel output subqueues, each output ... This paper proposes a new queuing model and adaptive scheduling scheme which realizes multi-class QoS mechanism under DiffServ architecture. The queuing model is composed of two parallel output subqueues, each output sub-queue adopts random drop algorithm by setting different buffer threshold for different class traffic, so it can provide multi-class QoS. The new proposed scheduling scheme which adaptively changes the parameter A can guarantee the performance target of high class traffic, in the mean time, improve the QoS of low classes traffic. 展开更多
关键词 multi-class QoS classes DIFFSERV adaptive scheduling scheme.
在线阅读 下载PDF
基于改进Res2Net与迁移学习的水果图像分类 被引量:3
12
作者 吴迪 肖衍 +2 位作者 沈学军 万琴 陈子涵 《电子科技大学学报》 北大核心 2025年第1期62-71,共10页
针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成... 针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成卷积核,利用meta-ACON激活函数优化ReLU激活函数,动态学习激活函数的线性和非线性,自适应选择是否激活神经元;其次,采用基于模型迁移的训练方式进一步提升分类的效率与鲁棒性。实验结果表明,该算法在Fruit-Dataset和Fruits-360数据集上的测试准确率相比Res2Net提升了1.2%和1.0%,召回率相比Res2Net提升了1.13%和0.89%,有效提升了水果图像分类性能。 展开更多
关键词 图像分类 Res2Net 动态多尺度融合注意力 激活函数 迁移学习
在线阅读 下载PDF
基于联邦学习的代价敏感卷积神经网络分类方法 被引量:1
13
作者 王丹 吴腾 +2 位作者 于振华 李冠琛 马志强 《西安科技大学学报》 北大核心 2025年第3期591-606,共16页
为解决传统分布式学习方法在训练分类模型时面临的数据隐私泄露和类不平衡问题,提出了一种基于联邦学习的代价敏感卷积神经网络分类方法(Fed-CoSen)。该方法基于联邦学习框架,通过量化客户端数据的不平衡度,采用加权联邦平均策略进行全... 为解决传统分布式学习方法在训练分类模型时面临的数据隐私泄露和类不平衡问题,提出了一种基于联邦学习的代价敏感卷积神经网络分类方法(Fed-CoSen)。该方法基于联邦学习框架,通过量化客户端数据的不平衡度,采用加权联邦平均策略进行全局模型训练,确保客户端数据的隐私性以及全局模型聚合过程的公平性;结合自适应平衡交叉熵损失函数和代价敏感卷积神经网络,优化客户端局部模型的分类性能。结果表明:在CIFAR-10数据集上模拟的2种联邦学习类不平衡场景、COVID-19数据集上模拟的医疗类不平衡场景中,与对比试验中的最佳方法Fed-Focal相比,Fed-CoSen在精确度上平均提升了1.84%,在召回率上平均提升了1.88%,在F1分数上平均提升了1.87%;充分验证了该方法在保护数据隐私的前提下,处理类不平衡数据分类任务中的有效性和适用性。 展开更多
关键词 联邦学习 类不平衡 加权聚合 深度学习 分类
在线阅读 下载PDF
基于卷积和Transformer的矿物拉曼光谱分类方法 被引量:1
14
作者 耿磊 仇怀志 +2 位作者 肖志涛 张芳 吴骏 《天津工业大学学报》 北大核心 2025年第1期53-61,共9页
针对矿物类别众多、存在环境杂质等干扰信息以及部分拉曼光谱存在相似性等问题,结合拉曼光谱时域和频域上多尺度特征信息,提出一种基于卷积结构和自注意力结构的双分支分类网络RT-Net(Residual-Transformer Net)。该网络利用卷积块搭建... 针对矿物类别众多、存在环境杂质等干扰信息以及部分拉曼光谱存在相似性等问题,结合拉曼光谱时域和频域上多尺度特征信息,提出一种基于卷积结构和自注意力结构的双分支分类网络RT-Net(Residual-Transformer Net)。该网络利用卷积块搭建局部特征提取模块,引入通道注意力增强局部特征提取能力;利用自注意力结构学习拉曼光谱频域中的双向依赖关系来提取全局特征信息,由注意力融合模块进行多尺度特征融合用以分类。实验结果表明:RT-Net实现了对于1321类矿物拉曼光谱快速准确的分类,分类准确率达到90.31%;此外,在精准率、召回率和F1得分3个评估指标上分别达到了0.8781、0.9066和0.8972,进一步验证了RT-Net的有效性。 展开更多
关键词 矿物分类 拉曼光谱 频域 注意力机制 多尺度融合
在线阅读 下载PDF
KNN特征增强与互信息特征选择的两阶段多维分类方法 被引量:1
15
作者 李二超 张宝新 贾彬彬 《计算机工程与应用》 北大核心 2025年第15期167-177,共11页
现有多维分类的特征增强方法虽丰富了特征空间,但对特征内在质量缺乏有效评估,易引入冗余,影响分类性能。提出基于KNN特征增强与互信息特征选择的两阶段多维分类方法KMFM。第一阶段通过KNN特征增强扩展特征空间,第二阶段基于互信息评估... 现有多维分类的特征增强方法虽丰富了特征空间,但对特征内在质量缺乏有效评估,易引入冗余,影响分类性能。提出基于KNN特征增强与互信息特征选择的两阶段多维分类方法KMFM。第一阶段通过KNN特征增强扩展特征空间,第二阶段基于互信息评估并筛选相关性最强的特征子集,且通过计算类别空间组合熵考虑类别变量间的依赖关系。在10个基准数据集上的实验结果表明,KMFM在汉明分值、精确匹配和亚精确匹配指标上相比现有方法取得显著提升。在90种配置中,KMFM实现77.8%的最佳表现;与只采用特征增强的KRAM相比,性能提升显著;与只进行互信息特征选择MIFS相比,分类性能在9个指标上全面优越,充分说明了该算法的有效性和泛用性。 展开更多
关键词 多维分类 特征增强 特征选择 互信息 类依赖
在线阅读 下载PDF
融合知识图谱和大模型的高校科研管理问答系统设计 被引量:5
16
作者 王永 秦嘉俊 +1 位作者 黄有锐 邓江洲 《计算机科学与探索》 北大核心 2025年第1期107-117,共11页
科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科... 科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科研知识图谱。利用同时进行意图分类和实体提取的多任务模型进行语义解析。借助解析结果来生成查询语句,并从知识图谱中检索信息来回复常规问题。将大语言模型与知识图谱相结合,以辅助处理开放性问题。在意图和实体具有关联的数据集上的实验结果表明,采用的多任务模型在意图分类和实体识别任务上的F1值分别为0.958和0.937,优于其他对比模型和单任务模型。Cypher生成测试表明了自定义Prompt在激发大语言模型涌现能力方面的成效,利用大语言模型实现文本生成Cypher的准确率达到85.8%,有效处理了基于知识图谱的开放性问题。采用知识图谱、传统模型和大语言模型搭建的问答系统的准确性为0.935,很好地满足了智能问答的需求。 展开更多
关键词 知识图谱 多任务模型 意图分类 命名实体识别 大语言模型
在线阅读 下载PDF
基于多模态的缺陷绝缘子图像的多标签分类 被引量:2
17
作者 周景 王满意 田兆星 《高电压技术》 北大核心 2025年第2期642-651,共10页
对巡检图像中绝缘子缺陷准确分类是输电线路自动巡检领域中的关键技术之一。针对传统深度学习的分类方法对文本信息利用不够充分以及绝缘子图像分类标签较为单一的问题,该文首次提出了一种基于多模态的缺陷绝缘子图像的多标签分类方法... 对巡检图像中绝缘子缺陷准确分类是输电线路自动巡检领域中的关键技术之一。针对传统深度学习的分类方法对文本信息利用不够充分以及绝缘子图像分类标签较为单一的问题,该文首次提出了一种基于多模态的缺陷绝缘子图像的多标签分类方法。首先,采用一种多模态联合数据增强方法,实现了绝缘子图像和标签文本间跨模态的数据增强。然后,使用Vision Transformer网络提取图像的特征信息和BERT网络提取标签文本的特征信息,充分利用图像和标签文本的特征信息,从不同模态获取全面的信息,提高了网络的分类能力。最后,通过对比学习的方式将图像和文本的特征信息关联,增强网络分类的可靠性的同时,又为分类结果提供了良好的可解释性。实验结果表明,该方法的分类总体准确率达到93.87%,在同一数据集中对比其他模型,分类性能具有明显优势,为多模态技术在电网领域的应用提供了较好的基础。 展开更多
关键词 绝缘子图像 多标签分类 多模态 对比学习 数据增强
在线阅读 下载PDF
基于标签构建与特征融合的多标签文本分类研究方法 被引量:2
18
作者 王旭阳 卢世红 《贵州师范大学学报(自然科学版)》 北大核心 2025年第1期105-114,共10页
目前存在的多标签文本分类任务算法,对于标签的建模不是很成熟,其中对于标签的依赖性问题,以及标签特征和文本特征的融合程度问题,均缺乏有效的处理方法。为了更有效地利用标签间的依赖关系,以及整合标签特征与文本特征的融合,提出了一... 目前存在的多标签文本分类任务算法,对于标签的建模不是很成熟,其中对于标签的依赖性问题,以及标签特征和文本特征的融合程度问题,均缺乏有效的处理方法。为了更有效地利用标签间的依赖关系,以及整合标签特征与文本特征的融合,提出了一种名为CGTCN的多标签文本分类模型。该模型从标签构建和特征融合的角度出发,通过CompGCN建模标签依赖关系,先利用Transformer中的多头交叉注意力机制初步融合标签特征和文本特征,然后再通过CorNet网络进一步捕获标签特征与文本特征之间的相关性,从而得到最终的标签预测。实验结果显示,与基准模型相比,该方法能够有效的提升模型性能,在多标签文本分类任务中取得更好的分类效果。 展开更多
关键词 多标签文本分类 CompGCN TRANSFORMER CorNet 标签相关性
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
19
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
基于多模态对比学习的输电线路螺栓缺陷分类 被引量:1
20
作者 张珂 郑朝烨 +2 位作者 石超君 赵振兵 肖扬杰 《高电压技术》 北大核心 2025年第2期630-641,共12页
输电线路巡检中采集的螺栓图像有分辨率低、视觉信息不足的特点。针对传统图像分类模型难以从螺栓图像中学习到语义丰富的视觉表征问题,提出了一种基于多模态对比学习的输电线路螺栓缺陷分类方法。首先,为了将文本中螺栓相关的语义信息... 输电线路巡检中采集的螺栓图像有分辨率低、视觉信息不足的特点。针对传统图像分类模型难以从螺栓图像中学习到语义丰富的视觉表征问题,提出了一种基于多模态对比学习的输电线路螺栓缺陷分类方法。首先,为了将文本中螺栓相关的语义信息和先验知识以跨模态的方式注入视觉表征,提出了一种结合多模态对比预训练和监督式微调的二阶段训练算法;其次,为了缓解多模态对比预训练中的过拟合问题,提出了标签平滑的信息噪声对比估计损失(info noise contrastive estimation loss with label smoothing,infoNCE-LS),以提高预训练视觉表征的泛化性能;最后,针对上下游任务的不匹配问题,设计了3种基于文本提示的分类头,以改善预训练视觉表征在监督式微调阶段的迁移学习效果。实验结果表明:该文基于Res Net50和ViT构建的两种模型在螺栓缺陷分类数据集上的准确率分别为92.3%和97.4%,相比基线分别提高了2.4%和5.8%。研究实现了从文本到图像的语义信息跨模态补充,为螺栓缺陷识别的研究提供了新的思路。 展开更多
关键词 输电线路 螺栓缺陷分类 多模态预训练 对比学习 迁移学习
在线阅读 下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部