Compressive sensing is a revolutionary idea proposed recently to achieve much lower sampling rate for signals.In the image application with limited resources the camera data can be stored and processed in compressed f...Compressive sensing is a revolutionary idea proposed recently to achieve much lower sampling rate for signals.In the image application with limited resources the camera data can be stored and processed in compressed form.An algorithm for moving object and region detection in video using a compressive sampling is developed.The algorithm estimates motion information of the moving object and regions in the video from the compressive measurements of the current image and background scene.The algorithm does not perform inverse compressive operation to obtain the actual pixels of the current image nor the estimated background.This leads to a computationally efficient method and a system compared with the existing motion estimation methods.The experimental results show that the sampling rate can reduce to 25% without sacrificing performance.展开更多
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back...Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.展开更多
A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models ...A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.展开更多
A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The im...A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The image obtained from one camera was inversely projected to the plane and then transformed to the view from another camera.The points on the plane shared the same position between original image and the transformed image.As a result,the cast shadows can be detected.In order to improve the efficiency of cast shadow detection and decrease computational complexity,the obvious object areas in CIELAB color space were removed and the potential shadow areas were obtained.Experimental results demonstrate that the proposed approach can detect cast shadows accurately even under various illuminations.展开更多
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalo...Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalogs.In this work,we integrate Digital Elevation Model(DEM)data to construct a high-quality dataset enriched with slope information,enabling a detailed analysis of crater features and effectively improving detection performance in complex terrains and low-contrast areas.Based on this foundation,we propose a novel two-stage detection network,MSFNet,which leverages multi-scale adaptive feature fusion and multisize ROI pooling to enhance the recognition of craters across various scales.Experimental results demonstrate that MSFNet achieves an F1 score of 74.8%on Test Region1 and a recall rate of 87%for craters with diameters larger than 2 km.Moreover,it shows exceptional performance in detecting sub-kilometer craters by successfully identifying a large number of high-confidence,previously unlabeled targets with a low false detection rate confirmed through manual review.This approach offers an efficient and reliable deep learning solution for lunar impact crater detection.展开更多
An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame dif...An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.展开更多
It is known that detecting small moving objects in as- tronomical image sequences is a significant research problem in space surveillance. The new theory, compressive sensing, pro- vides a very easy and computationall...It is known that detecting small moving objects in as- tronomical image sequences is a significant research problem in space surveillance. The new theory, compressive sensing, pro- vides a very easy and computationally cheap coding scheme for onboard astronomical remote sensing. An algorithm for small moving space object detection and localization is proposed. The algorithm determines the measurements of objects by comparing the difference between the measurements of the current image and the measurements of the background scene. In contrast to reconstruct the whole image, only a foreground image is recon- structed, which will lead to an effective computational performance, and a high level of localization accuracy is achieved. Experiments and analysis are provided to show the performance of the pro- posed approach on detection and localization.展开更多
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ...While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.展开更多
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on...A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes.展开更多
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balanc...Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balancing detection precision and speed.Additionally,their accuracy is insufficient,particularly for small objects in complex environments.To solve these problems,we propose a lightweight feature-enhanced convolutional neural network able to perform detection with high precision detection for low-attitude flying objects in real time to provide guidance information to suppress black-flying UAVs.The proposed network consists of three modules.A lightweight and stable feature extraction module is used to reduce the computational load and stably extract more low-level feature,an enhanced feature processing module significantly improves the feature extraction ability of the model,and an accurate detection module integrates low-level and advanced features to improve the multiscale detection accuracy in complex environments,particularly for small objects.The proposed method achieves a detection speed of 147 frames per second(FPS)and a mean average precision(mAP)of 90.97%for a dataset composed of flying objects,indicating its potential for low-altitude object detection.Furthermore,evaluation results based on microsoft common objects in context(MS COCO)indicate that the proposed method is also applicable to object detection in general.展开更多
The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some w...The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.展开更多
Under the conditions of strong sea clutter and complex moving targets,it is extremely difficult to detect moving targets in the maritime surface.This paper proposes a new algorithm named improved tunable Q-factor wave...Under the conditions of strong sea clutter and complex moving targets,it is extremely difficult to detect moving targets in the maritime surface.This paper proposes a new algorithm named improved tunable Q-factor wavelet transform(TQWT)for moving target detection.Firstly,this paper establishes a moving target model and sparsely compensates the Doppler migration of the moving target in the fractional Fourier transform(FRFT)domain.Then,TQWT is adopted to decompose the signal based on the discrimination between the sea clutter and the target’s oscillation characteristics,using the basis pursuit denoising(BPDN)algorithm to get the wavelet coefficients.Furthermore,an energy selection method based on the optimal distribution of sub-bands energy is proposed to sparse the coefficients and reconstruct the target.Finally,experiments on the Council for Scientific and Industrial Research(CSIR)dataset indicate the performance of the proposed method and provide the basis for subsequent target detection.展开更多
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing...This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.展开更多
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de...A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.展开更多
Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few l...Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.展开更多
Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorit...Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.展开更多
文摘Compressive sensing is a revolutionary idea proposed recently to achieve much lower sampling rate for signals.In the image application with limited resources the camera data can be stored and processed in compressed form.An algorithm for moving object and region detection in video using a compressive sampling is developed.The algorithm estimates motion information of the moving object and regions in the video from the compressive measurements of the current image and background scene.The algorithm does not perform inverse compressive operation to obtain the actual pixels of the current image nor the estimated background.This leads to a computationally efficient method and a system compared with the existing motion estimation methods.The experimental results show that the sampling rate can reduce to 25% without sacrificing performance.
基金This project was supported by the foundation of the Visual and Auditory Information Processing Laboratory of BeijingUniversity of China (0306) and the National Science Foundation of China (60374031).
文摘Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.
基金Project(T201221207)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(2012CB725301)supported by National Basic Research and Development Program,China
文摘A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.
基金Project(40971219)supported by the Natural Science Foundation of ChinaProjects(201121202020005,T201221207)supported by the Fundamental Research Fund for the Central Universities,China
文摘A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The image obtained from one camera was inversely projected to the plane and then transformed to the view from another camera.The points on the plane shared the same position between original image and the transformed image.As a result,the cast shadows can be detected.In order to improve the efficiency of cast shadow detection and decrease computational complexity,the obvious object areas in CIELAB color space were removed and the potential shadow areas were obtained.Experimental results demonstrate that the proposed approach can detect cast shadows accurately even under various illuminations.
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
基金National Natural Science Foundation of China(12103020,12363009)Natural Science Foundation of Jiangxi Province(20224BAB211011)+1 种基金Open Project Program of State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology)(Macao FDCT grant No.002/2024/SKL)Youth Talent Project of Science and Technology Plan of Ganzhou(2022CXRC9191,2023CYZ26970)。
文摘Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalogs.In this work,we integrate Digital Elevation Model(DEM)data to construct a high-quality dataset enriched with slope information,enabling a detailed analysis of crater features and effectively improving detection performance in complex terrains and low-contrast areas.Based on this foundation,we propose a novel two-stage detection network,MSFNet,which leverages multi-scale adaptive feature fusion and multisize ROI pooling to enhance the recognition of craters across various scales.Experimental results demonstrate that MSFNet achieves an F1 score of 74.8%on Test Region1 and a recall rate of 87%for craters with diameters larger than 2 km.Moreover,it shows exceptional performance in detecting sub-kilometer craters by successfully identifying a large number of high-confidence,previously unlabeled targets with a low false detection rate confirmed through manual review.This approach offers an efficient and reliable deep learning solution for lunar impact crater detection.
文摘An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.
基金supported by the National Natural Science Foundation of China (60903126)the China Postdoctoral Special Science Foundation (201003685)+1 种基金the China Postdoctoral Science Foundation (20090451397)the Northwestern Polytechnical University Foundation for Fundamental Research (JC201120)
文摘It is known that detecting small moving objects in as- tronomical image sequences is a significant research problem in space surveillance. The new theory, compressive sensing, pro- vides a very easy and computationally cheap coding scheme for onboard astronomical remote sensing. An algorithm for small moving space object detection and localization is proposed. The algorithm determines the measurements of objects by comparing the difference between the measurements of the current image and the measurements of the background scene. In contrast to reconstruct the whole image, only a foreground image is recon- structed, which will lead to an effective computational performance, and a high level of localization accuracy is achieved. Experiments and analysis are provided to show the performance of the pro- posed approach on detection and localization.
基金supported by the Program of Introducing Talents of Discipline to Universities(111 Plan)of China(B14010)the National Natural Science Foundation of China(31727901)
文摘While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
基金the National Natural Science Foundation of China(No.61671470).
文摘A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes.
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.
基金supported by the National Natural Science Foundation of China(52075027)the Fundamental Research Funds for the Central Universities(2020XJJD03).
文摘Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balancing detection precision and speed.Additionally,their accuracy is insufficient,particularly for small objects in complex environments.To solve these problems,we propose a lightweight feature-enhanced convolutional neural network able to perform detection with high precision detection for low-attitude flying objects in real time to provide guidance information to suppress black-flying UAVs.The proposed network consists of three modules.A lightweight and stable feature extraction module is used to reduce the computational load and stably extract more low-level feature,an enhanced feature processing module significantly improves the feature extraction ability of the model,and an accurate detection module integrates low-level and advanced features to improve the multiscale detection accuracy in complex environments,particularly for small objects.The proposed method achieves a detection speed of 147 frames per second(FPS)and a mean average precision(mAP)of 90.97%for a dataset composed of flying objects,indicating its potential for low-altitude object detection.Furthermore,evaluation results based on microsoft common objects in context(MS COCO)indicate that the proposed method is also applicable to object detection in general.
基金National Natural Science Foundation of China(grant number 61801512,grant number 62071484)Natural Science Foundation of Jiangsu Province(grant number BK20180080)to provide fund for conducting experiments。
文摘The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.
基金the National Natural Science Foundation of China(U19B2031).
文摘Under the conditions of strong sea clutter and complex moving targets,it is extremely difficult to detect moving targets in the maritime surface.This paper proposes a new algorithm named improved tunable Q-factor wavelet transform(TQWT)for moving target detection.Firstly,this paper establishes a moving target model and sparsely compensates the Doppler migration of the moving target in the fractional Fourier transform(FRFT)domain.Then,TQWT is adopted to decompose the signal based on the discrimination between the sea clutter and the target’s oscillation characteristics,using the basis pursuit denoising(BPDN)algorithm to get the wavelet coefficients.Furthermore,an energy selection method based on the optimal distribution of sub-bands energy is proposed to sparse the coefficients and reconstruct the target.Finally,experiments on the Council for Scientific and Industrial Research(CSIR)dataset indicate the performance of the proposed method and provide the basis for subsequent target detection.
文摘This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.
基金Project(61101185)supported by the National Natural Science Foundation of China
文摘A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.
基金the China National Key Research and Development Program(Grant No.2016YFC0802904)National Natural Science Foundation of China(Grant No.61671470)62nd batch of funded projects of China Postdoctoral Science Foundation(Grant No.2017M623423)to provide fund for conducting experiments。
文摘Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.
基金supported by the National Natural Science Foundation of China(6160304061973036).
文摘Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.