The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning co...The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning control strategy, which learned unknown modeling error by using previous control information repeatedly, was introduced into Smith prediction monitoring AGC system. Firstly, conventional Smith predictor and improved Smith predictor with PI-P controller were analyzed. Secondly, on the basis of establishing of feedback-assisted iterative learning control strategy for improved Smith predictor, process control signal update law and control error were deduced, then convergence condition of this strategy was put forward and proved. Finally, after modeling the automatic position control system, the PI-P Smith prediction monitoring AGC system with feedback-assisted iterative learning control was researched through simulation. Simulation results indicate that this system remains stable during model mismatching. The robustness and response of monitoring AGC is improved by development of feedback-assisted iterative learning control strategy for PI-P Smith predictor.展开更多
In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been d...In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.展开更多
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
基金Project(51074051)supported by the National Natural Science Foundation of China
文摘The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning control strategy, which learned unknown modeling error by using previous control information repeatedly, was introduced into Smith prediction monitoring AGC system. Firstly, conventional Smith predictor and improved Smith predictor with PI-P controller were analyzed. Secondly, on the basis of establishing of feedback-assisted iterative learning control strategy for improved Smith predictor, process control signal update law and control error were deduced, then convergence condition of this strategy was put forward and proved. Finally, after modeling the automatic position control system, the PI-P Smith prediction monitoring AGC system with feedback-assisted iterative learning control was researched through simulation. Simulation results indicate that this system remains stable during model mismatching. The robustness and response of monitoring AGC is improved by development of feedback-assisted iterative learning control strategy for PI-P Smith predictor.
基金sponsored by National Natural Science Foundation of China(50975020)National Major Program of Science and Tech-nique(2009ZX04014-101)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalipality(PHR20090518)
文摘In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.
基金Supported by National Basic Research Program of China(973 Program)(2013CB035500) National Natural Science Foundation of China(61233004,61221003,61074061)+1 种基金 International Cooperation Program of Shanghai Science and Technology Commission (12230709600) the Higher Education Research Fund for the Doctoral Program of China(20120073130006)
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.