The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning co...The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning control strategy, which learned unknown modeling error by using previous control information repeatedly, was introduced into Smith prediction monitoring AGC system. Firstly, conventional Smith predictor and improved Smith predictor with PI-P controller were analyzed. Secondly, on the basis of establishing of feedback-assisted iterative learning control strategy for improved Smith predictor, process control signal update law and control error were deduced, then convergence condition of this strategy was put forward and proved. Finally, after modeling the automatic position control system, the PI-P Smith prediction monitoring AGC system with feedback-assisted iterative learning control was researched through simulation. Simulation results indicate that this system remains stable during model mismatching. The robustness and response of monitoring AGC is improved by development of feedback-assisted iterative learning control strategy for PI-P Smith predictor.展开更多
In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been d...In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.展开更多
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previou...There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.展开更多
It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quit...It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.展开更多
风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—...风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。展开更多
基金Project(51074051)supported by the National Natural Science Foundation of China
文摘The performance of Smith prediction monitoring automatic gauge control(AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning control strategy, which learned unknown modeling error by using previous control information repeatedly, was introduced into Smith prediction monitoring AGC system. Firstly, conventional Smith predictor and improved Smith predictor with PI-P controller were analyzed. Secondly, on the basis of establishing of feedback-assisted iterative learning control strategy for improved Smith predictor, process control signal update law and control error were deduced, then convergence condition of this strategy was put forward and proved. Finally, after modeling the automatic position control system, the PI-P Smith prediction monitoring AGC system with feedback-assisted iterative learning control was researched through simulation. Simulation results indicate that this system remains stable during model mismatching. The robustness and response of monitoring AGC is improved by development of feedback-assisted iterative learning control strategy for PI-P Smith predictor.
基金sponsored by National Natural Science Foundation of China(50975020)National Major Program of Science and Tech-nique(2009ZX04014-101)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalipality(PHR20090518)
文摘In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.
基金Supported by National Basic Research Program of China(973 Program)(2013CB035500) National Natural Science Foundation of China(61233004,61221003,61074061)+1 种基金 International Cooperation Program of Shanghai Science and Technology Commission (12230709600) the Higher Education Research Fund for the Doctoral Program of China(20120073130006)
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.
基金Supported by the 13th Five-year National Key R&D Program:Development and Verification of Information Perception and Environment Intelligent Control System for Dairy Cattle and Beef Cattle(2016YFD0700204-02)Quality and Brand Construction of "Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.
基金This project was supported by the Hebei Provincial Nature Science Foundation (E20070011048).
文摘It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.
文摘风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。