A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat tr...A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat transfer and chemical reaction of the resin on the flow and temperature are considered. The numerical algorithm of the resin flow and temperature variation in the process of RTM are studied. Its accuracy and convergence are analyzed. The comparison of temperature variations between experimental results and model predictions is carried out for two RTM cases. Result shows that the model is efficient for evaluating the flow and temperature variation in the filling stage of RTM and there is a good coincidence between theory and experiment.展开更多
To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was...To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.展开更多
The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.T...The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.The warpage is one of main defects of injection products,which cost much time and materials.In order to minimize warpage to ensure the precise shape of molded parts,it needs to combine design,service conditions,process parameters,material properties,and other factors in the design and manufacturing.Finite element tools and material database are used to analyze the occurrence of warpage,and analysis results contribute to the improvement and optimization of injection molding process of typical parts.To find the optimal process parameters in the solution space,experimental data are used to establish backpropagation(BP)network for predicting warpage of a bearing stand based on analysis with Moldflow.With a proper transfer function and the BP network architecture,results from the BP network method satisfiy the criteria of accuracy.The optimal solutions are searched in the BP network by the genetic algorithm with the finding that the optimization method based on the BP network is efficient.展开更多
Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe ...Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.展开更多
Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, ...Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied.It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.展开更多
Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are stil...Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.展开更多
The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers.In this paper,a novel design strategy for cylindrical uniform coils is first proposed,which combines...The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers.In this paper,a novel design strategy for cylindrical uniform coils is first proposed,which combines the target-field method(TFM)with an optimized slime mold algorithm(SMA)to determine optimal structure parameters.Then,the realization method for the designed cylindrical coil by using the flexible printed circuit(FPC)technology is presented.Compared with traditional fabrication methods,this method has advantages in excellent flexibility and bending property,making the coils easier to be arranged in limited space.Moreover,the manufacturing process of the FPC technology via a specific cylindrical uniform magnetic field coil is discussed in detail,and the successfully realized coil is well tested in a verification system.By comparing the uniformity performance of the experimental coil with the simulation one,the effectiveness of the FPC technology in producing cylindrical coils has been well validated.展开更多
The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uproo...Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uprooted outdoor seed trees and outdoor cutting branches was carried out. The advantages of two new and improved techniques were of efficiency, economy, safety and ease of operation. The methods can be applied in hybridization and breeding of poplar and other easy-to-root trees.展开更多
It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results co...It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results confirmed that lead-time was decreased and product customization was improved in making die by using computer technology. At the same time, precision molding can decrease the reject ratio of refiner plates, and optimizing the alloy and shakeout time can eliminate the need for heat treatment. The new fabricating process showed several advantages over the traditional process in increasing toughness, better casting precision, elimination of the annealing treatment stage and raising production efficiency.展开更多
Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity,...Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity, experience model of polyimide porous materials was proposed which is similar to the traditional expe- rience model of the metal porous material. While being pressed, polyimide was found soon to come into elasto- plastic deformation progress in this paper, so the theory model of metal porous material based on Hooker's law was not fit for the polymer any more. A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.展开更多
The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle ...The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. TMB was proved to be an effective b-crystalline nucleating agent for WF/PP. The DSC data showed that the crystallization peak temperature(Tp) increased and the half-time(t1/2) decreased with the addition of TMB.Three theoretical models were used to analyze the nonisothermal crystallization process. The modified Avrami method and Mo method successfully explained the nonisothermal crystallization behavior of PP and its composites. Their activation energies for non-isothermal crystallization were determined basing on the Kissinger method.展开更多
The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase...The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase the production capacity. This paper proposes a proprietary vacuum dry-bag isostatic pressing(DIP) apparatus. The structural change of the matrix graphite powder during the DIP process was examined by analyzing the density change of the matrix graphite spheres with pressure. The soft molding process was simulated using the finite element method. The dimensional changes in the spheres during the pressing, carbonization, and purification stages were explored. The performance of the fuel matrix produced by the DIP method was comprehensively examined. The fuel matrix met the technical requirements and its anisotropy was significantly reduced. The DIP method can significantly improve both the production efficiency and quality of fuel elements. This will play a key role in meeting the huge demand for fuel elements of HTRs and molten salt reactors.展开更多
文摘A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat transfer and chemical reaction of the resin on the flow and temperature are considered. The numerical algorithm of the resin flow and temperature variation in the process of RTM are studied. Its accuracy and convergence are analyzed. The comparison of temperature variations between experimental results and model predictions is carried out for two RTM cases. Result shows that the model is efficient for evaluating the flow and temperature variation in the filling stage of RTM and there is a good coincidence between theory and experiment.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 30471351).
文摘To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.
基金supported by a grant from the Ningbo Furja Industrial Corporation Limited
文摘The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.The warpage is one of main defects of injection products,which cost much time and materials.In order to minimize warpage to ensure the precise shape of molded parts,it needs to combine design,service conditions,process parameters,material properties,and other factors in the design and manufacturing.Finite element tools and material database are used to analyze the occurrence of warpage,and analysis results contribute to the improvement and optimization of injection molding process of typical parts.To find the optimal process parameters in the solution space,experimental data are used to establish backpropagation(BP)network for predicting warpage of a bearing stand based on analysis with Moldflow.With a proper transfer function and the BP network architecture,results from the BP network method satisfiy the criteria of accuracy.The optimal solutions are searched in the BP network by the genetic algorithm with the finding that the optimization method based on the BP network is efficient.
基金Specialized Research Fund for the Doc-toral Program of Higher Education (No.20020613005)
文摘Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.
基金financially supported by NSFC under Grant No. 90923040China’s National "973" Program under Grant No. 2009CB724202
文摘Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied.It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.
基金financial support of this work by the National Natural Science Foundation of China(Nos.22378332,52003219)the Open Fund of Zhejiang Key Laboratory of Flexible Electronics(No.2022FE008)+1 种基金the Natural Science Foundation of Ningbo(NO.2022J058)Ministry of Industry and Information Technology high quality development project(TC220A04A-206).
文摘Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.
基金Project supported by the National Natural Science Foundation of China(Grant No.62101004)the Opening Research Fund of Anhui Engineering Research Center of Vehicle Display Integrated Systems(Grant No.VDIS2023C05)+1 种基金the Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province,China(Grant No.DQKJ202309)the Excellent Scientific Research and Innovation Teams of Anhui Province,China(Grant No.2022AH010059)。
文摘The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers.In this paper,a novel design strategy for cylindrical uniform coils is first proposed,which combines the target-field method(TFM)with an optimized slime mold algorithm(SMA)to determine optimal structure parameters.Then,the realization method for the designed cylindrical coil by using the flexible printed circuit(FPC)technology is presented.Compared with traditional fabrication methods,this method has advantages in excellent flexibility and bending property,making the coils easier to be arranged in limited space.Moreover,the manufacturing process of the FPC technology via a specific cylindrical uniform magnetic field coil is discussed in detail,and the successfully realized coil is well tested in a verification system.By comparing the uniformity performance of the experimental coil with the simulation one,the effectiveness of the FPC technology in producing cylindrical coils has been well validated.
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.
文摘Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uprooted outdoor seed trees and outdoor cutting branches was carried out. The advantages of two new and improved techniques were of efficiency, economy, safety and ease of operation. The methods can be applied in hybridization and breeding of poplar and other easy-to-root trees.
文摘It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results confirmed that lead-time was decreased and product customization was improved in making die by using computer technology. At the same time, precision molding can decrease the reject ratio of refiner plates, and optimizing the alloy and shakeout time can eliminate the need for heat treatment. The new fabricating process showed several advantages over the traditional process in increasing toughness, better casting precision, elimination of the annealing treatment stage and raising production efficiency.
文摘Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity, experience model of polyimide porous materials was proposed which is similar to the traditional expe- rience model of the metal porous material. While being pressed, polyimide was found soon to come into elasto- plastic deformation progress in this paper, so the theory model of metal porous material based on Hooker's law was not fit for the polymer any more. A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.
基金financially supported by‘‘the Fundamental Research Funds for the Central Universities’’(2572015AB07)the Forestry Industry Research of China(No.201204802)the National Natural Science Foundation of China(No.31100425)
文摘The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. TMB was proved to be an effective b-crystalline nucleating agent for WF/PP. The DSC data showed that the crystallization peak temperature(Tp) increased and the half-time(t1/2) decreased with the addition of TMB.Three theoretical models were used to analyze the nonisothermal crystallization process. The modified Avrami method and Mo method successfully explained the nonisothermal crystallization behavior of PP and its composites. Their activation energies for non-isothermal crystallization were determined basing on the Kissinger method.
基金supported by the National S&T Major Project (No.ZX06901)。
文摘The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase the production capacity. This paper proposes a proprietary vacuum dry-bag isostatic pressing(DIP) apparatus. The structural change of the matrix graphite powder during the DIP process was examined by analyzing the density change of the matrix graphite spheres with pressure. The soft molding process was simulated using the finite element method. The dimensional changes in the spheres during the pressing, carbonization, and purification stages were explored. The performance of the fuel matrix produced by the DIP method was comprehensively examined. The fuel matrix met the technical requirements and its anisotropy was significantly reduced. The DIP method can significantly improve both the production efficiency and quality of fuel elements. This will play a key role in meeting the huge demand for fuel elements of HTRs and molten salt reactors.