Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of...Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of the course of drying,by interference factors that exist in the dryness environment and by the physical characteristics of the lumber itself.To improve the measuring accuracy and reliability of LMC,the optimal support vector machine(SVM) algorithm was put forward for regression analysis LMC.Environmental factors such as air temperature and relative humidity were considered,the data of which were extracted with the principle component analysis method.The regression and prediction of SVM was optimized based on the grid search(GS) technique.Groups of data were sampled and analyzed,and simulation comparison of forecasting performance shows that the main component data were extracted to speed up the convergence rate of the optimum algorithm.The GS-SVM shows a better performance in solving the LMC measuring and forecasting problem.展开更多
Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study wa...Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a bo...Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.展开更多
The effects of high temperature steam pretreatment on the change in wood moisture content (MC) and characteristics of vacuum drying were investigated in this study. Poplar and manchurian walnut woods were pretreated...The effects of high temperature steam pretreatment on the change in wood moisture content (MC) and characteristics of vacuum drying were investigated in this study. Poplar and manchurian walnut woods were pretreated with high temperature steam at 100~C and 140~C, prior to vacuum drying. A comparison of the characteristics of vacuum drying between steam pretreated wood and untreated wood was carried out. The results show that during steam pretreatment, the MC of wood decreased within a few hours. The reduction of MC varied with the temperature; the higher the temperature, the faster the MC dropped. During the vacuum drying stage, the rates of drying ofpretreated samples were higher than those of untreated samples when MC was below the fiber saturation point. Furthermore, the total drying time of samples treated at a steam temperature of 140~C was lower than that of untreated samples. Therefore, a vacuum procedure after steam pretreatment can effectively shorten the drying time when drying wood.展开更多
To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical p...To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.展开更多
We determined the ultrasonic velocity and en- ergy attenuation value of three tree species (basswood, elm, and fir) 1 per tree in different moisture content levels, using RSM-SY5 ultrasonic testing instrument, and a...We determined the ultrasonic velocity and en- ergy attenuation value of three tree species (basswood, elm, and fir) 1 per tree in different moisture content levels, using RSM-SY5 ultrasonic testing instrument, and analyzed the regularity of ultrasonic velocity and energy attenuation values with moisture content, respectively. The ultrasonic velocity of the three species decreased as moisture content increased, with the turning point at 32 % of moisture content. When the moisture content was more than 32 %, the growth curve of ultrasonic wave velocity was flattened. The moisture contents of all three species increased under the any point moisture content of 1-60 %. The differen- tiation degrees of energy attenuation value of three species were higher than the corresponding ultrasonic wave ve- locity, when the moisture content was less than 15 %. The differentiation degrees of the energy attenuation value of three species was higher than the corresponding ultrasonic velocity, when the moisture content was more than 15 %.展开更多
The moisture content of dead forest fuel is an important indicator of risk levels of forest fires and prediction of fire spread. Moisture distribution is important to determine wild fire rating. However, it is often d...The moisture content of dead forest fuel is an important indicator of risk levels of forest fires and prediction of fire spread. Moisture distribution is important to determine wild fire rating. However, it is often difficult to predict moisture distribution because of a complex terrain, changeable environments and low cover of commercial communication signals inside the forest. This study proposes a moisture content prediction system composed of environmental data collected using a long range radio frequency band 433 MHz wireless sensor network and data processing for moisture prediction based on a BP (back-propagation) neural network. In the fall of 2019, twenty nodes for the collection of environmental data were placed in four forest stands of Maoershan National Forest for a month;7440 sets of data including temperature, humidity, wind speed and air pressure were obtained. Half the data were used as a training set, the other as a testing set for a BP neural network. The results show that the average absolute error between the predicted value and the real value of moisture content of fuels of Larix gmelini, Betula platyphylla, Juglans mandshurica, and Quercus mongolica stands was 0.94%, 0.21%, 0.86%, 0.97%, respectively. The prediction accuracy was relatively high. The proposed distributed moisture content prediction method has the advantages of wide coverage and good real-time performance;at the same time, it is not limited by commercial signals and so it is especially suitable for forest fire prediction in remote mountainous areas.展开更多
The pinewood nematode(PWN), Bursaphelenchus xylophilus, has become one of the most severe threats to pine forest worldwide. Nematodes, migrating through resin canals and feeding on the living cells, induce rapid met...The pinewood nematode(PWN), Bursaphelenchus xylophilus, has become one of the most severe threats to pine forest worldwide. Nematodes, migrating through resin canals and feeding on the living cells, induce rapid metabolic changes in ray parenchyma cells, create cavitation areas, decrease xylem water content and oleoresin exudation, and cause necrosis of parenchyma and cambial cells. This study focused on the impact of PWN infection on technological parameters of wood and evaluated the impact of anatomic and biochemical incidences of tree defense reactions on basic density, extractive content and moisture sorption properties of Pinus pinaster wood.Samples of infected and uninfected wood were studied.The presence of nematodes reduced wood basic density by2 % and decreased the total content of extractives in infected wood as compared with uninfected(5.98 and8.90 % of dry wood mass, respectively). Extractives in infected trees had inverse distribution along the trunk as compared with uninfected trees. The adsorption isotherms for infected and uninfected wood had similar positioning.We recorded differences(some statistically significant) in the equilibrium moisture content of infected and uninfected wood under varying environmental conditions. Despite the verified differences in wood basic density, extractive content and moisture sorption properties, the overall conclusion is that the PWN had a slight impact on these characteristics of wood.展开更多
Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two as...Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.展开更多
This paper, with veneer as a particularly detected target, deals with a new method for detecting veneer moisture content. Surface resistance is measured by the fixed pressure, circle-shaped point and surface-touched d...This paper, with veneer as a particularly detected target, deals with a new method for detecting veneer moisture content. Surface resistance is measured by the fixed pressure, circle-shaped point and surface-touched detector. With the help of the computer, the veneer moisture and its distribution will be detected in a faster way with no harm to the veneer surface.展开更多
Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, lea...Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, leading to considerable damage to the forests. The moisture content of combustible fuels is an important factor in the occurrence and persistence of underground forest fires. The Daxing’an Mountains are a hot spot for underground fires in China. This paper looks at the influence of different moisture contents on underground fire characteristics using simulation combustion experiments in the laboratory. The study showed that peak temperature and spread rate fluctuation of humus at different moisture levels increased with humus depth. Peak temperature and spread rate fluctuation of humus at different depths decreased with increased moisture;moisture content and depth of humus had a significant effect on peak temperature and spread rate fluctuation;peak temperature at different depths decreased with increased moisture;the spread rate in upper layers increased with moisture content, while the spread rate in the lower layers decreased with increased moisture content.展开更多
In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption expe...In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption experiment, Chinese fir (Cunninghamia lanceolata) specimens were subjected to the adsorption processes at 25℃, 10 different relative humidity environments and the moisture contents were measured at distinct time intervals of adsorption processes. For the dynamic sorption experiment, the specimens were exposed to periodically and linearly varying relative humidity between 45% and 75% at 25℃. Moisture content as well as radial and tangential dimensional changes in response to the changing relative humidity were measured. The main results from the experiments indicated that: the moisture sorption isotherms of Chinese fir at equilibrium state and different stages of adsorption processes could be characterized by S-shape curves. From the non-equilibrium state to the equilibrium state, the sigmoid moisture sorption isotherms changed from smooth, gradually increasing values to a steep rise at 100% humidity. Furthermore, under dynamic conditions with a constant temperature and a linearly and periodically varying relative humidity, the moisture content as well as radial and tangential dimensional changes of the specimens generally waved but lagged behind the relative humidity change.展开更多
Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content mea...Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.展开更多
Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, cohere...Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, coherence agglomerates, and paste agglomerates in order to successfully identify the different growth stages and select the region for coexistence of most stable heterogeneous agglomerates as the research object. A multi-channel conductance electrical circuit experimental device was developed in this study to measure the conductance signal, which was found to have a liner relationship with the moisture content inside the fluidized bed. By adjusting the sieve mesh openings to achieve the layered isolation of heterogeneous agglomerates, the conductance signal recovered slowly as a result of the agglomerates' fracture during the continuous fluidization process, so that particles and agglomerates moisture distribution measurements could be implemented. The device was used to measure the particles and agglomerates moisture distribution state in the heterogeneous coexistence region, when they were injected with liquid mass within the range of w i=2.8 kg to 4.4 kg. The results indicated that with the increase of liquid mass flow, the moisture content of coherence agglomerates also increased, but the moisture content of nucleation agglomerates was decreased, and that of the original particles was maintained at a relatively low level. When the experimental injection amount reached 4.4 kg, the moisture contained in coherence agglomerates could amount to 87.3%, accounting for a big percentage of moisture in the fluidized bed.展开更多
This study aims to investigate wood density at different levels of moisture, basic density and shrinkage of timber from Turkey oak (Quercus cerris L.) coppice forests growing in Central Italy. We also studied the va...This study aims to investigate wood density at different levels of moisture, basic density and shrinkage of timber from Turkey oak (Quercus cerris L.) coppice forests growing in Central Italy. We also studied the variability in density in the trees within and among sites. Density shows no significant statistical differences in the tested population. A higher variability in the shrinkage than in the density was found. Wood moisture is referred to as dry mass and fresh mass, which is related to many performance characteristics of wood, i.e., energy production. Trends in moisture and water content were studied because these physical parameters play an important role in the specific area of firewood which requires an accurate estimation of mass, volume and energy content. This work is a contribution to improve xylo-energy estimates of small and medium forestry issues.展开更多
基金supported by the Natural Science Foundation of China(Grant No.31470715),(Grant No.31470714)the Fundamental Research Funds for the Central Universities(2572016EBT1)
文摘Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of the course of drying,by interference factors that exist in the dryness environment and by the physical characteristics of the lumber itself.To improve the measuring accuracy and reliability of LMC,the optimal support vector machine(SVM) algorithm was put forward for regression analysis LMC.Environmental factors such as air temperature and relative humidity were considered,the data of which were extracted with the principle component analysis method.The regression and prediction of SVM was optimized based on the grid search(GS) technique.Groups of data were sampled and analyzed,and simulation comparison of forecasting performance shows that the main component data were extracted to speed up the convergence rate of the optimum algorithm.The GS-SVM shows a better performance in solving the LMC measuring and forecasting problem.
基金the National Key Research and Development Program of ChinaKey Projects for Strategic International Innovative Cooperation in Science and Technology(2018YFE0207800)+1 种基金Fundamental Research Funds for the Central Universities(2572019BA03)partly by the China Scholarship Council(CSC No.2016DFH417)。
文摘Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
基金financially supported by the Special Fund for Forest Scientific Research in the Public Welfare(No.201404402)Fundamental Research Funds for the Central Universities(Nos.C2572014BA23 and 2572019BA03)。
文摘Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.
基金supported by the National Natural Science Foundation of China (No. 30871978)
文摘The effects of high temperature steam pretreatment on the change in wood moisture content (MC) and characteristics of vacuum drying were investigated in this study. Poplar and manchurian walnut woods were pretreated with high temperature steam at 100~C and 140~C, prior to vacuum drying. A comparison of the characteristics of vacuum drying between steam pretreated wood and untreated wood was carried out. The results show that during steam pretreatment, the MC of wood decreased within a few hours. The reduction of MC varied with the temperature; the higher the temperature, the faster the MC dropped. During the vacuum drying stage, the rates of drying ofpretreated samples were higher than those of untreated samples when MC was below the fiber saturation point. Furthermore, the total drying time of samples treated at a steam temperature of 140~C was lower than that of untreated samples. Therefore, a vacuum procedure after steam pretreatment can effectively shorten the drying time when drying wood.
基金funded by the National Natural Science Foundation of China(Grant Nos.31600453 and 31570547)Fundamental Research Funds for the Central Universities(Grant No.2572017EB02)Natural Science Foundation of Heilongjiang Province,China(Grant No.C201403)
文摘To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.
基金financially supported by‘‘The Fundamental Research Funds for the Central Universities’’,DL12BB12 and 2572014CB35
文摘We determined the ultrasonic velocity and en- ergy attenuation value of three tree species (basswood, elm, and fir) 1 per tree in different moisture content levels, using RSM-SY5 ultrasonic testing instrument, and analyzed the regularity of ultrasonic velocity and energy attenuation values with moisture content, respectively. The ultrasonic velocity of the three species decreased as moisture content increased, with the turning point at 32 % of moisture content. When the moisture content was more than 32 %, the growth curve of ultrasonic wave velocity was flattened. The moisture contents of all three species increased under the any point moisture content of 1-60 %. The differen- tiation degrees of energy attenuation value of three species were higher than the corresponding ultrasonic wave ve- locity, when the moisture content was less than 15 %. The differentiation degrees of the energy attenuation value of three species was higher than the corresponding ultrasonic velocity, when the moisture content was more than 15 %.
基金This work was supported by the Fundamental Research Funds for the Central Universities(Grant No.2572020AW43NO.2572019CP19)+2 种基金the National Natural Science Foundation of China(Grant No.31470715)the Natural Science Foundation of Hei-longjiang Province(Grant No.TD2020C001)the project for cultivating excellent doctoral dissertation of forestry engineering(Grant No.LYGCYB202009).
文摘The moisture content of dead forest fuel is an important indicator of risk levels of forest fires and prediction of fire spread. Moisture distribution is important to determine wild fire rating. However, it is often difficult to predict moisture distribution because of a complex terrain, changeable environments and low cover of commercial communication signals inside the forest. This study proposes a moisture content prediction system composed of environmental data collected using a long range radio frequency band 433 MHz wireless sensor network and data processing for moisture prediction based on a BP (back-propagation) neural network. In the fall of 2019, twenty nodes for the collection of environmental data were placed in four forest stands of Maoershan National Forest for a month;7440 sets of data including temperature, humidity, wind speed and air pressure were obtained. Half the data were used as a training set, the other as a testing set for a BP neural network. The results show that the average absolute error between the predicted value and the real value of moisture content of fuels of Larix gmelini, Betula platyphylla, Juglans mandshurica, and Quercus mongolica stands was 0.94%, 0.21%, 0.86%, 0.97%, respectively. The prediction accuracy was relatively high. The proposed distributed moisture content prediction method has the advantages of wide coverage and good real-time performance;at the same time, it is not limited by commercial signals and so it is especially suitable for forest fire prediction in remote mountainous areas.
基金supported by Grant No.SFRH/BPD/40135/2008 Funded by FCT(POPH-QREN-Typology 4.1,FCI and MEC)
文摘The pinewood nematode(PWN), Bursaphelenchus xylophilus, has become one of the most severe threats to pine forest worldwide. Nematodes, migrating through resin canals and feeding on the living cells, induce rapid metabolic changes in ray parenchyma cells, create cavitation areas, decrease xylem water content and oleoresin exudation, and cause necrosis of parenchyma and cambial cells. This study focused on the impact of PWN infection on technological parameters of wood and evaluated the impact of anatomic and biochemical incidences of tree defense reactions on basic density, extractive content and moisture sorption properties of Pinus pinaster wood.Samples of infected and uninfected wood were studied.The presence of nematodes reduced wood basic density by2 % and decreased the total content of extractives in infected wood as compared with uninfected(5.98 and8.90 % of dry wood mass, respectively). Extractives in infected trees had inverse distribution along the trunk as compared with uninfected trees. The adsorption isotherms for infected and uninfected wood had similar positioning.We recorded differences(some statistically significant) in the equilibrium moisture content of infected and uninfected wood under varying environmental conditions. Despite the verified differences in wood basic density, extractive content and moisture sorption properties, the overall conclusion is that the PWN had a slight impact on these characteristics of wood.
文摘Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.
文摘This paper, with veneer as a particularly detected target, deals with a new method for detecting veneer moisture content. Surface resistance is measured by the fixed pressure, circle-shaped point and surface-touched detector. With the help of the computer, the veneer moisture and its distribution will be detected in a faster way with no harm to the veneer surface.
基金financially supported by the National Natural Science Foundation of China (31971669)the Postgraduate Innovation Project of Beihua University (2021-013)
文摘Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, leading to considerable damage to the forests. The moisture content of combustible fuels is an important factor in the occurrence and persistence of underground forest fires. The Daxing’an Mountains are a hot spot for underground fires in China. This paper looks at the influence of different moisture contents on underground fire characteristics using simulation combustion experiments in the laboratory. The study showed that peak temperature and spread rate fluctuation of humus at different moisture levels increased with humus depth. Peak temperature and spread rate fluctuation of humus at different depths decreased with increased moisture;moisture content and depth of humus had a significant effect on peak temperature and spread rate fluctuation;peak temperature at different depths decreased with increased moisture;the spread rate in upper layers increased with moisture content, while the spread rate in the lower layers decreased with increased moisture content.
文摘In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption experiment, Chinese fir (Cunninghamia lanceolata) specimens were subjected to the adsorption processes at 25℃, 10 different relative humidity environments and the moisture contents were measured at distinct time intervals of adsorption processes. For the dynamic sorption experiment, the specimens were exposed to periodically and linearly varying relative humidity between 45% and 75% at 25℃. Moisture content as well as radial and tangential dimensional changes in response to the changing relative humidity were measured. The main results from the experiments indicated that: the moisture sorption isotherms of Chinese fir at equilibrium state and different stages of adsorption processes could be characterized by S-shape curves. From the non-equilibrium state to the equilibrium state, the sigmoid moisture sorption isotherms changed from smooth, gradually increasing values to a steep rise at 100% humidity. Furthermore, under dynamic conditions with a constant temperature and a linearly and periodically varying relative humidity, the moisture content as well as radial and tangential dimensional changes of the specimens generally waved but lagged behind the relative humidity change.
文摘Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.
基金supported by the National Natural Science Foundation of China(No.51276033)
文摘Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, coherence agglomerates, and paste agglomerates in order to successfully identify the different growth stages and select the region for coexistence of most stable heterogeneous agglomerates as the research object. A multi-channel conductance electrical circuit experimental device was developed in this study to measure the conductance signal, which was found to have a liner relationship with the moisture content inside the fluidized bed. By adjusting the sieve mesh openings to achieve the layered isolation of heterogeneous agglomerates, the conductance signal recovered slowly as a result of the agglomerates' fracture during the continuous fluidization process, so that particles and agglomerates moisture distribution measurements could be implemented. The device was used to measure the particles and agglomerates moisture distribution state in the heterogeneous coexistence region, when they were injected with liquid mass within the range of w i=2.8 kg to 4.4 kg. The results indicated that with the increase of liquid mass flow, the moisture content of coherence agglomerates also increased, but the moisture content of nucleation agglomerates was decreased, and that of the original particles was maintained at a relatively low level. When the experimental injection amount reached 4.4 kg, the moisture contained in coherence agglomerates could amount to 87.3%, accounting for a big percentage of moisture in the fluidized bed.
文摘This study aims to investigate wood density at different levels of moisture, basic density and shrinkage of timber from Turkey oak (Quercus cerris L.) coppice forests growing in Central Italy. We also studied the variability in density in the trees within and among sites. Density shows no significant statistical differences in the tested population. A higher variability in the shrinkage than in the density was found. Wood moisture is referred to as dry mass and fresh mass, which is related to many performance characteristics of wood, i.e., energy production. Trends in moisture and water content were studied because these physical parameters play an important role in the specific area of firewood which requires an accurate estimation of mass, volume and energy content. This work is a contribution to improve xylo-energy estimates of small and medium forestry issues.