This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-coo...This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.展开更多
To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividu...In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividuation customization, low cost, quick response to market demands. The modul arization theory is simply introduced. Based on the characteristics of modular ization, the mechanism of realizing MC with modularization is analyzed. The in dividuation customization can be realized with the different combinations of mod ules. The low cost can be realized with the scale economy and the category econo my of modules. The quick response can be realized with standard modules and its interfaces. So, the modularization is a kind of effective method in realizing MC . The modularization for MC is a systems engineering. With product modularized, production organization and management and manufacturing equipment will be chang ed. In addition, the paper also proposes a Mass Customization production model w hich is based on modularization. This Mass Customization production model is con sisted of modularization of product design, specialization of manufacturing, Vir tual Enterprises based on modularizing enterprises, and modularizing manufacturi ng equipment. The module design for MC, modularizing enterprises, and reconfigur able automation manufacturing equipment are discussed, and it is pointed out tha t they are the important supports for MC.展开更多
Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.展开更多
A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide...A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.展开更多
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved p...To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.展开更多
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n...A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.展开更多
In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich ass...In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.展开更多
The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,...The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.展开更多
Based on the design of a docking mechanism,this paper thoroughly investigates the space automatic doc- king of self-reconfiguration modular exploration robot system(RMERS).The method that leads robot to achieve space ...Based on the design of a docking mechanism,this paper thoroughly investigates the space automatic doc- king of self-reconfiguration modular exploration robot system(RMERS).The method that leads robot to achieve space docking by using two-dimensional PSD is put forward innovatively for the median size robot system.At the same time,in order to enlarge the detecting extension and the precision of PSD and reduce its dependence on light- ing signal,the PSD was remade by increasing the optical device over its light-sensitive surface.The emission board and LED light scheduling were designed according to docking arithmetic,and the operating principle of docking process was analyzed based on these.The simulation experiments were carried out and their results are presented.展开更多
文摘This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
文摘In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividuation customization, low cost, quick response to market demands. The modul arization theory is simply introduced. Based on the characteristics of modular ization, the mechanism of realizing MC with modularization is analyzed. The in dividuation customization can be realized with the different combinations of mod ules. The low cost can be realized with the scale economy and the category econo my of modules. The quick response can be realized with standard modules and its interfaces. So, the modularization is a kind of effective method in realizing MC . The modularization for MC is a systems engineering. With product modularized, production organization and management and manufacturing equipment will be chang ed. In addition, the paper also proposes a Mass Customization production model w hich is based on modularization. This Mass Customization production model is con sisted of modularization of product design, specialization of manufacturing, Vir tual Enterprises based on modularizing enterprises, and modularizing manufacturi ng equipment. The module design for MC, modularizing enterprises, and reconfigur able automation manufacturing equipment are discussed, and it is pointed out tha t they are the important supports for MC.
基金supported by the National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.
基金Projects(50921002, 50774084) supported by the National Natural Science Foundation of ChinaProject(2007AA05Z318) supported by the National High-tech Research and Development Program of China+1 种基金Project(BK2010002) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(20100480473) supported by the China Postdoctoral Science Foundation
文摘A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.
基金supported by the National Natural Science Foundation of China(6067406960574056).
文摘To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.
基金Project(9140A18010210KG01) supported by the Departmental Pre-Research Fund of China
文摘A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.
基金supported by the National Natural Science Foundation of China(6210333962073261)+1 种基金Shaanxi Natural Science Basic Research Program(2023-JC-YB-569)the Fundamental Research Funds for the Central Universities。
文摘In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.
基金This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).
文摘The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.
基金Supported by the National High Technology Research and Development Program of China(2002AA422130)
文摘Based on the design of a docking mechanism,this paper thoroughly investigates the space automatic doc- king of self-reconfiguration modular exploration robot system(RMERS).The method that leads robot to achieve space docking by using two-dimensional PSD is put forward innovatively for the median size robot system.At the same time,in order to enlarge the detecting extension and the precision of PSD and reduce its dependence on light- ing signal,the PSD was remade by increasing the optical device over its light-sensitive surface.The emission board and LED light scheduling were designed according to docking arithmetic,and the operating principle of docking process was analyzed based on these.The simulation experiments were carried out and their results are presented.