期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
1
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
A Novel Evolutionary-Fuzzy Control Algorithm for Complex Systems 被引量:1
2
作者 王攀 徐承志 +1 位作者 冯珊 徐爱华 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期52-60,共9页
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key... This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems. 展开更多
关键词 modified genetic algorithm Nonlinear quantization factor Adaptive fuzzy controller ITAE index Complex systems.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部