期刊文献+
共找到934篇文章
< 1 2 47 >
每页显示 20 50 100
Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization 被引量:5
1
作者 Mudong Li Hui Zhao +1 位作者 Xingwei Weng Hanqiao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期603-617,共15页
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is... The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms. 展开更多
关键词 artificial bee colony (ABC) function optimization search strategy population initialization Wilcoxon signed ranks test.
在线阅读 下载PDF
A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach 被引量:4
2
作者 Seyed Mohammad Seyedhosseini Mohammad Javad Esfahani Mehdi Ghaffari 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期181-188,共8页
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk... Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return. 展开更多
关键词 portfolio optimizations mean-variance model mean semi-variance model harmony search and artificial bee colony efficient frontier
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
3
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (ABC) algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
4
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(ABC) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
在线阅读 下载PDF
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm 被引量:15
5
作者 ZHANG Dong-Li TANG Ying-Gan GUAN Xin-Ping 《自动化学报》 EI CSCD 北大核心 2014年第5期973-980,共8页
关键词 PID控制器 优化设计 VR系统 群算法 分数阶 工蜂 自动电压调节器 搜索范围
在线阅读 下载PDF
An effective discrete artificial bee colony algorithm for flow shop scheduling problem with intermediate buffers 被引量:3
6
作者 张素君 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3471-3484,共14页
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti... An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value. 展开更多
关键词 discrete artificial bee colony algorithm flow shop scheduling problem with intermediate buffers destruction and construction tournament selection
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
7
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
S-box:six-dimensional compound hyperchaotic map and artificial bee colony algorithm 被引量:1
8
作者 Ye Tian Zhimao Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期232-241,共10页
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th... Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria. 展开更多
关键词 substitution boxes(S-boxes) multiple cryptographic criteria six-dimensional compound hyperchaotic map artificial bee colony algorithm(ABC).
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
9
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
10
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs 被引量:3
11
作者 Yuancheng Li Zongpu Li +1 位作者 Liqun Yang Bei Wang 《自动化学报》 EI CSCD 北大核心 2017年第7期1280-1288,共9页
关键词 差分进化算法 电力系统 无功优化 量子编码 应用 微分进化算法 局部搜索能力 分布式发电
在线阅读 下载PDF
Logistic混沌映射与差分进化改进人工蜂群优化水下定位 被引量:3
12
作者 陈嘉兴 刘扬 +1 位作者 刘晓茜 刘志华 《工程科学与技术》 北大核心 2025年第1期57-67,共11页
水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为... 水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为对节点目标函数的优化问题,有效地提高了水下节点的定位精度。尽管如此,ABC算法在迭代过程中仍存在收敛速度慢、易陷入局部最优的问题。针对这些问题,提出了一种通过Logistic混沌映射与差分进化改进的人工蜂群优化水下定位算法(improved artificial bee colony optimization underwater localization algorithm by Logistic chaos mapping and differential evolution,LDIABC)。首先,在算法种群初始化阶段,引入了Logistic混沌映射,利用该映射函数产生的混沌序列代替随机数生成器,从而使种群在初始化分布时蜜源位置更均匀,并从理论上证明了Logistic混沌序列的互异性,从而避免由于种群分布过于密集导致算法在迭代过程中陷入局部最优;其次,提出了适应度方差这一标准来验证在算法迭代过程中未陷入局部最优,进一步证明其有效性;然后,在引领蜂搜索阶段,基于差分进化的变异策略,提出了权重因子改进引领蜂邻域搜索方式,提高了引领蜂的全局搜索效率,加快了算法的收敛速度。仿真实验表明,LDIABC算法能够有效避免传统ABC算法收敛速度慢和易陷入局部最优的问题。相较于Tent-IABC算法、ELOABC算法、CODEGWO算法以及SAPSO算法,LDIABC算法在收敛速度和节点定位成功率上均有显著提升,并且优化定位精度分别提升了6.36%、13.33%、14.16%和16.88%。这些结果证明LDIABC算法能够有效提升水下节点定位精度,具有良好的优化效果。 展开更多
关键词 人工蜂群优化 水下定位 LOGISTIC混沌映射 适应度方差 权重因子
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:4
13
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
基于改进人工蜂群算法的矿井风量按需调控智能决策 被引量:1
14
作者 张浪 雷爽 +1 位作者 李伟 刘彦青 《工矿自动化》 北大核心 2025年第3期131-137,共7页
针对现有元启发式算法求解矿井风量调控无约束优化数学模型存在收敛速度较慢的问题,提出了一种基于改进人工蜂群算法(ABC)的矿井风量按需调控智能决策方法。以矿井调节分支风阻为决策变量、各分支实际风量与需风量相符合为约束条件,以... 针对现有元启发式算法求解矿井风量调控无约束优化数学模型存在收敛速度较慢的问题,提出了一种基于改进人工蜂群算法(ABC)的矿井风量按需调控智能决策方法。以矿井调节分支风阻为决策变量、各分支实际风量与需风量相符合为约束条件,以目标用风分支风量与理想风量差距最小为目标,建立了矿井风量按需调控智能决策模型;运用拉格朗日松弛方法优化模型的约束条件,采用冲突数方法优化模型的目标函数,利用随机搜索方法和启发式算法优化模型的搜索策略。针对人工蜂群算法(ABC)利用能力不足的问题,提出了一种改进ABC算法,并将其用于求解矿井风量按需调控智能决策模型。该算法在采蜜蜂局部寻优时引入群体历史最优解引导采蜜行为,并利用一般反向学习策略保存侦查蜂的搜索经验,良好地平衡了算法的探索和利用能力。实验结果表明:与粒子群优化(PSO)算法、ABC算法、基于全局最优的人工蜂群(GABC)算法和基于一般反向学习的人工蜂群(GABC-GOBL)算法相比,改进ABC算法能更加快速、稳定地求解出矿井风量按需调控最优方案,且风量调控精度可达0.49 m^(3)/s。 展开更多
关键词 矿井通风 风量按需调控 风量智能决策 人工蜂群算法 风阻
在线阅读 下载PDF
考虑双资源约束多转速的绿色柔性作业车间调度研究
15
作者 王玉芳 章殿清 +2 位作者 华晓麟 张毅 葛师语 《控制理论与应用》 北大核心 2025年第10期2019-2027,共9页
考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法... 考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法的进化起点.在雇佣蜂完成搜索之后,引入新蜂种学习蜂,学习优秀蜜源的基因,降低搜索的随机性,提高搜索精度,并采用Q学习算子对学习概率进行自适应优化,保证蜜源多样性的同时加强算法的全局搜索能力.跟随蜂阶段设计一种动态邻域搜索策略,加入基于变速及平衡工人工作时长的邻域结构,提高跟随蜂的局部搜索能力.通过不同算法对拓展算例的对比验证所提算法的优越性. 展开更多
关键词 双资源约束 多转速 绿色柔性车间调度 多目标优化 人工蜂群算法 Q学习
在线阅读 下载PDF
用于多无人机协同路径规划的改进黏菌蜂群算法
16
作者 熊慧 葛邦鲁 +1 位作者 刘近贞 王家兴 《浙江大学学报(工学版)》 北大核心 2025年第8期1698-1707,1717,共11页
针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性... 针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性收敛因子,对黏菌算法进行改进,在增加种群多样性的同时,提高算法的收敛速度.对全局最优个体采用精英反向学习策略,提高种群质量.在人工蜂群探索能力的基础上,引入全局最优位置引导,提高黏菌算法的开发能力.通过对14个测试函数和CEC2017测试函数集中部分函数的寻优对比分析可知,ISMABC算法的寻优能力和收敛速度都有了较大的提升.为了验证ISMABC算法的可行性,采用所提算法求解多无人机协同路径规划问题.通过对比分析可知,利用ISMABC算法能够为每架UAV规划出满足约束且代价最小的路径. 展开更多
关键词 多无人机 路径规划 黏菌算法 人工蜂群算法 佳点集 非线性收敛因子
在线阅读 下载PDF
1060铝板渐进成形参数的精英群体引导蜂群优化
17
作者 陈建丽 曾德长 《机械设计与制造》 北大核心 2025年第8期186-191,共6页
为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了... 为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了对性能参数敏感性较强的工艺参数作为优化对象,基于最优拉丁超立方抽样法在优化空间抽取了采样点,并基于有限元模型获取了相应的性能参数;在蜂群算法中引入了精英群体引导策略,提出了基于精英群体引导蜂群算法的参数优化方法。经验证,精英群体引导蜂群算法搜索的结果优于传统蜂群算法和正交蜂群算法搜索的结果;将精英群体引导蜂群算法的优化结果进行有限元和生产验证,试制件无明显外观缺陷;经测量,试制件最大减薄率、厚度标准差以优化结果为中心进行小范围波动,且明显小于工厂产品的最大减薄率和厚度标准差,验证了精英群体引导蜂群算法在参数优化中的优越性和生产的稳定性。 展开更多
关键词 渐进成形 1060铝合金板 蜂群算法 精英群体 参数优化
在线阅读 下载PDF
k-center问题的算法研究综述
18
作者 王晓峰 华盈盈 +2 位作者 王军霞 彭庆媛 何飞 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期42-50,97,共10页
k-center问题是设施选址的基础问题,同样是NP难问题,在分配、紧急服务等领域也有着实际的应用。随着问题规模的扩大,原有的算法已不再适用,需要进一步优化或者改进。为了找到求解该问题的高效算法,对现有算法进行研究。对各类求解k-cen... k-center问题是设施选址的基础问题,同样是NP难问题,在分配、紧急服务等领域也有着实际的应用。随着问题规模的扩大,原有的算法已不再适用,需要进一步优化或者改进。为了找到求解该问题的高效算法,对现有算法进行研究。对各类求解k-center问题的算法进行梳理,将求解算法划分为精确算法、启发式算法、元启发式算法、近似算法等,从算法原理、改进思路、性能和精度等方面进行对比综述。精确算法在求解小规模k-center问题时可在多项式时间内得到最优解,但是算法效率低,不适用于大规模问题;启发式算法可以在多项式时间内给出相对最优解,但是没有理论保证,无法衡量与最优解的关系;元启发式算法可对目前存在的智能优化算法进行改进,给出相对最优解,但是解的质量无法保证;利用近似算法得到的解具有近似比保证,有较大的理论研究价值,但是实用价值较弱。目前求解k-center问题的元启发式算法已取得一定的研究成果,但是在求解时间、求解规模、算法效率等方面仍待突破,这将是未来k-center问题的研究重点。 展开更多
关键词 k-center问题 精确算法 近似算法 蜂群优化 遗传算法
在线阅读 下载PDF
自适应人工蜂群算法求解柔性车间调度问题
19
作者 王玉芳 章殿清 +2 位作者 华晓麟 陈凡 姚彬彬 《计算机工程与设计》 北大核心 2025年第9期2667-2674,共8页
为解决柔性作业车间生产调度问题,提出了一种自适应人工蜂群算法。在雇佣蜂阶段,引入引导概率以提高全局搜索效率;在观察蜂阶段,采用基于多邻域结构的搜索策略以增强局部寻优能力。通过设计强化学习算子,实现了引导概率和邻域结构的自... 为解决柔性作业车间生产调度问题,提出了一种自适应人工蜂群算法。在雇佣蜂阶段,引入引导概率以提高全局搜索效率;在观察蜂阶段,采用基于多邻域结构的搜索策略以增强局部寻优能力。通过设计强化学习算子,实现了引导概率和邻域结构的自适应优化。通过在柔性作业车间通用测试集上的验证,仿真结果表明改进后的人工蜂群算法在局部搜索能力方面表现出色,具有良好的收敛性和鲁棒性。此外,利用电动汽车电池生产实例验证了该算法在解决实际调度问题的显著优势。 展开更多
关键词 柔性作业车间 自适应 人工蜂群算法 引导概率 多邻域结构 强化学习 电动汽车电池
在线阅读 下载PDF
基于元学习和集成学习的高熵合金相预测算法
20
作者 侯帅 李玉娇 +2 位作者 白梅娟 孙梦玥 石修志 《计算机应用与软件》 北大核心 2025年第6期302-310,共9页
准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成... 准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成学习性能的映射关系,来推荐合适的集成算法;后者采用基于单体精度约束的人工蜂群算法来提高集成学习的准确率。实验结果表明,该算法的预测性能要优于其他选择性集成学习算法。 展开更多
关键词 高熵合金 相预测 元学习 集成学习 人工蜂群算法
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部