期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact performance of a floating slab with a longitudinal connection track under fatigue loading
1
作者 LI Pei-cheng ZENG Zhi-ping +3 位作者 WANG Wei-dong LI Ping YE Meng-xuan LI Qiu-yi 《Journal of Central South University》 2025年第2期678-690,共13页
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl... In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements. 展开更多
关键词 longitudinally connected floating slab track full-scale experimental model fatigue experiment drop hammer in impact dynamic response
在线阅读 下载PDF
Bearing capacity of foundation on slope determined by energy dissipation method and model experiments 被引量:15
2
作者 杨小礼 王志斌 +1 位作者 邹金锋 李亮 《Journal of Central South University of Technology》 EI 2007年第1期125-128,共4页
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi... To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope. 展开更多
关键词 energy dissipation bearing capacity soil slope model experiment
在线阅读 下载PDF
Experimental and numerical studies on vibration characteristics of a railway embankment 被引量:1
3
作者 YANG Chang-wei YUAN Cheng +2 位作者 QU Li-ming DING Xuan-ming LIU Wei-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1641-1652,共12页
In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleratio... In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds.Using the ABAQUS finite element calculation software,a train load is applied through the FORTRAN subroutine,thereby establishing a three-dimensional finite element model with the same size as the model experiment.The data and conclusions of the finite element method model are verified by the model experiment.The model also makes some supplements to the model experiment.The experimental results show that with the increase of speed,the peak acceleration and earth pressure of the embankment also increase.By analyzing the experimental data,it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration.In addition,the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration. 展开更多
关键词 railway embankment vibration acceleration model experiment finite element modelling moving loads
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部