A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx...A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech...In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.展开更多
The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is des...The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is designed, in which the sus pension travel output of the adaptive LQG control system is taken as the tracking objective. The simulation results prove that the suspension travel and vertical acceleration can be tracked simultaneously with the simple fuzzy controller, and the tracking effect of fuzzy control is better than that of the PID controller.展开更多
In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investiga...In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investigated.After the analysis of tire moving characteristics and the vehicle stress analysis,the tire model based on the extension pacejka magic formula which combined longitudinal motion and lateral motion was developed and a nonlinear vehicle dynamical stability model with seven freedoms was made.A new model reference adaptive control project which made the slip angle and yaw rate of vehicle body as the output and feedback variable in adjusting the torque of vehicle body to control the vehicle stability was designed.A simulation model was also built in Matlab/Simulink to evaluate this control project.It was made up of many mathematical subsystem models mainly including the tire model module,the yaw moment calculation module,the center of mass parameter calculation module,tire parameter calculation module of multiple and so forth.The severe lane change simulation result shows that this vehicle model and the model reference adaptive control method have an excellent performance.展开更多
为了提升锂离子电池组均衡系统的性能,提出了一种基于模糊自适应模型预测控制(fuzzy adaptive model predictive control,FAMPC)的模块化均衡系统。首先,由改进的buck-boost电路和反激变压器组成双层均衡拓扑结构;其次,以不同电池剩余容...为了提升锂离子电池组均衡系统的性能,提出了一种基于模糊自适应模型预测控制(fuzzy adaptive model predictive control,FAMPC)的模块化均衡系统。首先,由改进的buck-boost电路和反激变压器组成双层均衡拓扑结构;其次,以不同电池剩余容量(state of charge,SOC)的状态作为模糊逻辑算法的输入,对均衡电流的约束条件进行调节;再次,基于FAMPC均衡控制方法,直接利用开关管的占空比作为系统输入;最后,在改变电池组状态并不使用额外电流控制机制的情况下进行仿真实验。结果表明,与传统的模糊控制方法相比,所提系统在正常条件下均衡速度提高了约24.51%,在电池低SOC的极端条件下均衡速度可以进一步提高至34.48%。所提系统将模糊算法提供的稳定性与模型预测控制算法的快速性相结合,保证了电池组更安全稳定的运行,可为电池组性能提升研究提供参考。展开更多
The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control me...The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control method is proposed in this paper to deal with the problem. In the proposed control method, a proportional element is added to the traditional deadbeat control in order to improve the robustness to parametric imprecision. To eliminate the error between output voltage and voltage reference caused by environmental noise and parametric deviation, a model reference adaptive regulator is also added to the control method. A 1kVA prototype is built based on DSP. Theoretical analysis and experimental results show that the robustness for parametric variation of the proposed method is much better than the traditional deadbeat control. The system can remain stable even when the systemic parameters have a large deviation from calculating parameters. The system has small static error and fast dynamic response with the new control method. This method is easy to realize in DSP and is suitable for full digital realization of UPS.展开更多
文摘A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金Supported by Program for New Century Excellent Talents in Universities of China (NCET-05-0607), National Natural Science Foundation of China (60774010), and Project for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
基金Supported-by Program for New Century Excellent Talents in Universities of China (NCET-05-0607), National Natural Science Foundation of China (60774010), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
基金supported by the Foundation of Shanghai Aerospace Science and Technology(SAST2016077)。
文摘In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.
基金Sponsored by Ministerial Level Equipment Pre-research Foundation(623010202 .4)
文摘The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is designed, in which the sus pension travel output of the adaptive LQG control system is taken as the tracking objective. The simulation results prove that the suspension travel and vertical acceleration can be tracked simultaneously with the simple fuzzy controller, and the tracking effect of fuzzy control is better than that of the PID controller.
文摘In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investigated.After the analysis of tire moving characteristics and the vehicle stress analysis,the tire model based on the extension pacejka magic formula which combined longitudinal motion and lateral motion was developed and a nonlinear vehicle dynamical stability model with seven freedoms was made.A new model reference adaptive control project which made the slip angle and yaw rate of vehicle body as the output and feedback variable in adjusting the torque of vehicle body to control the vehicle stability was designed.A simulation model was also built in Matlab/Simulink to evaluate this control project.It was made up of many mathematical subsystem models mainly including the tire model module,the yaw moment calculation module,the center of mass parameter calculation module,tire parameter calculation module of multiple and so forth.The severe lane change simulation result shows that this vehicle model and the model reference adaptive control method have an excellent performance.
文摘为了提升锂离子电池组均衡系统的性能,提出了一种基于模糊自适应模型预测控制(fuzzy adaptive model predictive control,FAMPC)的模块化均衡系统。首先,由改进的buck-boost电路和反激变压器组成双层均衡拓扑结构;其次,以不同电池剩余容量(state of charge,SOC)的状态作为模糊逻辑算法的输入,对均衡电流的约束条件进行调节;再次,基于FAMPC均衡控制方法,直接利用开关管的占空比作为系统输入;最后,在改变电池组状态并不使用额外电流控制机制的情况下进行仿真实验。结果表明,与传统的模糊控制方法相比,所提系统在正常条件下均衡速度提高了约24.51%,在电池低SOC的极端条件下均衡速度可以进一步提高至34.48%。所提系统将模糊算法提供的稳定性与模型预测控制算法的快速性相结合,保证了电池组更安全稳定的运行,可为电池组性能提升研究提供参考。
文摘The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control method is proposed in this paper to deal with the problem. In the proposed control method, a proportional element is added to the traditional deadbeat control in order to improve the robustness to parametric imprecision. To eliminate the error between output voltage and voltage reference caused by environmental noise and parametric deviation, a model reference adaptive regulator is also added to the control method. A 1kVA prototype is built based on DSP. Theoretical analysis and experimental results show that the robustness for parametric variation of the proposed method is much better than the traditional deadbeat control. The system can remain stable even when the systemic parameters have a large deviation from calculating parameters. The system has small static error and fast dynamic response with the new control method. This method is easy to realize in DSP and is suitable for full digital realization of UPS.