As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communica...As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and ...Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.展开更多
With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important...With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.展开更多
Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which jus...Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which just needs to input the conventional weather forecasting data.The model is established by using machine learning methods of random forest and optimized by Bayesian algorithm.The required data to train the model are obtained from daily measurements lasting9 months.To validate the accuracy model,the determination coefficients of two types of solar stills are calculated as 0.935and 0.929,respectively,which are much higher than the value of both multiple linear regression(0.767)and the traditional models(0.829 and 0.847).Moreover,by applying the model,we predicted the freshwater production of four cities in China.The predicted production is approved to be reliable by a high value of correlation(0.868)between the predicted production and the solar insolation.With the help of the forecasting model,it would greatly promote the global application of solar stills.展开更多
We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,an...We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,and changes in precipitation.We identified a clear wave signal using the two-dimensional fast Fourier transform method;the waves propagated westwards,with wavelengths of 45–20 km,periods of 50–120 min,and phase velocities mainly concentrated in the-25 m/s to-10 m/s range.The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves,peaking at 11:00 UTC,June 17,2016.The gravity wave signal was identified along 79.17–79.93°E,81.35–81.45°E and 81.5–81.83°E.The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h,indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts.展开更多
Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production. Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration. Its inevitability is a...Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production. Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration. Its inevitability is analyzed from three aspects. The factors that influence peak oil and their mechanisms are discussed. These include the amount of resources, the discovery maturity of resources, the depletion rate of reserves and the demand for oil. The advance in the study of peak oil in China is divided into three stages. The main characteristics, main researchers, forecast results and research methods are described in each stage. The progress of the study of peak oil in China is summarized and the present problems are analyzed. Finally three development trends of peak oil study in China are presented.展开更多
It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has...It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.展开更多
基金supported in part by the National Major Project under Grant No.2018ZX030001016the National Natural Science Foundation of China under Grant No.61371092the China Mobile Program of Ministry of Education under Grants No.MCM20150102
文摘As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金Project 2007CB209400 supported by the National Basic Research Program of China
文摘Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.
基金the National Social Science Funds of China (13&ZD159)the National Natural Science Foundation of China (71303258, 71373285)+1 种基金MOE (Ministry of Education in China) Project of Humanities and Social Sciences (13YJC630148)Science Foundation of China University of Petroleum, Beijing (ZX20150130) for sponsoring this joint research
文摘With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0127800)the Science,Technology&Innovation Funding Authority(STIFA),Egypt grant(Grant No.40517)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M682411)the Fundamental Research Funds for the Central Universities(Grant No.2019kfy RCPY045)。
文摘Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which just needs to input the conventional weather forecasting data.The model is established by using machine learning methods of random forest and optimized by Bayesian algorithm.The required data to train the model are obtained from daily measurements lasting9 months.To validate the accuracy model,the determination coefficients of two types of solar stills are calculated as 0.935and 0.929,respectively,which are much higher than the value of both multiple linear regression(0.767)and the traditional models(0.829 and 0.847).Moreover,by applying the model,we predicted the freshwater production of four cities in China.The predicted production is approved to be reliable by a high value of correlation(0.868)between the predicted production and the solar insolation.With the help of the forecasting model,it would greatly promote the global application of solar stills.
基金Project supported by China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406002)the National Natural Science Foundation of China(Grant Nos.41575065 and 41405049)+1 种基金the National Natural Science Foundation International Cooperation Project,China(Grant No.41661144024)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17010100)
文摘We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,and changes in precipitation.We identified a clear wave signal using the two-dimensional fast Fourier transform method;the waves propagated westwards,with wavelengths of 45–20 km,periods of 50–120 min,and phase velocities mainly concentrated in the-25 m/s to-10 m/s range.The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves,peaking at 11:00 UTC,June 17,2016.The gravity wave signal was identified along 79.17–79.93°E,81.35–81.45°E and 81.5–81.83°E.The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h,indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts.
文摘Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production. Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration. Its inevitability is analyzed from three aspects. The factors that influence peak oil and their mechanisms are discussed. These include the amount of resources, the discovery maturity of resources, the depletion rate of reserves and the demand for oil. The advance in the study of peak oil in China is divided into three stages. The main characteristics, main researchers, forecast results and research methods are described in each stage. The progress of the study of peak oil in China is summarized and the present problems are analyzed. Finally three development trends of peak oil study in China are presented.
基金This project has been supported by the seience foundation of the doctorate programmes of the National Education Commission.
文摘It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.