With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac...Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.展开更多
An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.Th...An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.展开更多
A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D...To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
This paper attempts to analyze the functions of hypo-cities in the context of regional economic integration and further studies how hypo-cities with different characteristics exploit their advantages to the full,putti...This paper attempts to analyze the functions of hypo-cities in the context of regional economic integration and further studies how hypo-cities with different characteristics exploit their advantages to the full,putting forward the development strategy of hypo-cities in the transportation integration.展开更多
针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)...针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。展开更多
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the Nationa Natural Science Foundation of China(60434010)Outstanding Youth Fund of Heilongjiang Province(JC200606)
文摘Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.
基金supported by the Joint Equipment Fund of the Ministry of Education(6141A02022340)
文摘An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
基金Supported by NSFC (50839002)Society Development Program of Jiangsu Province (BS2007139)
文摘To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘This paper attempts to analyze the functions of hypo-cities in the context of regional economic integration and further studies how hypo-cities with different characteristics exploit their advantages to the full,putting forward the development strategy of hypo-cities in the transportation integration.
文摘针对最大功率点跟踪(Maximum power point tracking, MPPT)算法中传统滑模控制存在收敛速度慢、抖振显著等不足,提出一种基于RBF神经网络的光伏系统非线性反步积分滑模(Nonlinear backstepping integral sliding mode control, NBISMC)最大功率点跟踪策略。首先,采用RBF神经网络对各种气象条件下的光伏电池输出电压进行预测;其次,设计非线性积分滑模面以改善传统滑模控制存在稳态误差及超调量大的问题;最后,设计新型指数趋近律,在加快收敛速度的同时有效削弱了系统高频抖振;通过Lyapunov函数分析非线性反步积分滑模控制的可达性与稳定性,并在静态、动态和遮光条件下进行仿真试验。仿真试验结果表明,在温度和光照强度发生变化的工况下,相比于传统滑模控制,基于RBF神经网络的非线性反步积分滑模控制能在各种气象条件下快速、准确地跟踪光伏系统最大功率点,具有较强的鲁棒性。