Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n...Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.展开更多
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c...Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.展开更多
Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-s...Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.展开更多
面向规模化屋顶光伏接入配电网急需进行有序控制的现状,提出了一种考虑源荷匹配特性的屋顶光伏并网的综合排序方法。首先,综合考虑负荷与光伏协调特性等需求,设计了兼顾光伏业主侧、电网侧和用电用户侧需求的综合评价指标体系;其次,提...面向规模化屋顶光伏接入配电网急需进行有序控制的现状,提出了一种考虑源荷匹配特性的屋顶光伏并网的综合排序方法。首先,综合考虑负荷与光伏协调特性等需求,设计了兼顾光伏业主侧、电网侧和用电用户侧需求的综合评价指标体系;其次,提出了一种基于改进层次分析法(improved analytic hierarchy process,IAHP)-改进反熵权法(improved anti-entropy method,IAM)-博弈组合赋权法-改进逼近理想解法(improved technique for order preference by similarity to ideal solution,improved TOPSIS)的评价方法,先根据改进的层次分析法进行主观赋权,同时考虑到指标间的相关性和波动性,采用所提改进反熵权法确定各指标的客观权重,再基于博弈论思想获取综合权重,以确保权重的合理性,然后,为提高各方案的整体区分度,采用所提改进逼近理想解法对屋顶光伏接入方案进行排序。最后,以IEEE 33节点系统为例,在MATLAB平台验证了所提指标体系和排序方法的有效性。展开更多
在进行目标方位(direction of arrival,DOA)估计时,背景噪声通常被假定为高斯噪声,但在水声环境中,噪声的概率密度函数存在非高斯分布情况,这会造成DOA估计出现伪峰及背景噪声增大等问题。文章将不服从高斯分布的水下噪声建模为α稳定分...在进行目标方位(direction of arrival,DOA)估计时,背景噪声通常被假定为高斯噪声,但在水声环境中,噪声的概率密度函数存在非高斯分布情况,这会造成DOA估计出现伪峰及背景噪声增大等问题。文章将不服从高斯分布的水下噪声建模为α稳定分布,采用数据加权的方法对信号进行预处理,随后在互质阵列中应用压缩感知方法对宽带信号进行目标DOA估计。对8元互质阵列使用改进算法进行仿真,结果表明该方法可以准确做出DOA估计,同时减少了伪峰数量。湖试数据的处理结果表明,在互质阵列中基于数据加权的压缩感知DOA估计能够减少伪峰,增强目标检测能力,具有更好的检测效果及实用性。展开更多
基金supported by the National Science Foundation for Outstanding Young Scientists (60425310)the Science Foundation for Post-doctoral Scientists of Central South University (2008)
文摘Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.
基金supported by the National Natural Science Foundation of China(Grant No.11822203and 11702026)。
文摘Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.
基金Projects(51005054, 50575051) supported by the National Natural Science Foundation of ChinaProject(HIT.BRETI.2010010) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(20100471025) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.
文摘面向规模化屋顶光伏接入配电网急需进行有序控制的现状,提出了一种考虑源荷匹配特性的屋顶光伏并网的综合排序方法。首先,综合考虑负荷与光伏协调特性等需求,设计了兼顾光伏业主侧、电网侧和用电用户侧需求的综合评价指标体系;其次,提出了一种基于改进层次分析法(improved analytic hierarchy process,IAHP)-改进反熵权法(improved anti-entropy method,IAM)-博弈组合赋权法-改进逼近理想解法(improved technique for order preference by similarity to ideal solution,improved TOPSIS)的评价方法,先根据改进的层次分析法进行主观赋权,同时考虑到指标间的相关性和波动性,采用所提改进反熵权法确定各指标的客观权重,再基于博弈论思想获取综合权重,以确保权重的合理性,然后,为提高各方案的整体区分度,采用所提改进逼近理想解法对屋顶光伏接入方案进行排序。最后,以IEEE 33节点系统为例,在MATLAB平台验证了所提指标体系和排序方法的有效性。
文摘在进行目标方位(direction of arrival,DOA)估计时,背景噪声通常被假定为高斯噪声,但在水声环境中,噪声的概率密度函数存在非高斯分布情况,这会造成DOA估计出现伪峰及背景噪声增大等问题。文章将不服从高斯分布的水下噪声建模为α稳定分布,采用数据加权的方法对信号进行预处理,随后在互质阵列中应用压缩感知方法对宽带信号进行目标DOA估计。对8元互质阵列使用改进算法进行仿真,结果表明该方法可以准确做出DOA估计,同时减少了伪峰数量。湖试数据的处理结果表明,在互质阵列中基于数据加权的压缩感知DOA估计能够减少伪峰,增强目标检测能力,具有更好的检测效果及实用性。