In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In a recent paper published in Phys.Rev.Lett.133,152503(2024),H.Zhang,T.Li,and X.Wang predicted that modern intense lasers can induce highly nonlinear responses in the 229 Th nucleus for the first time,which is an ast...In a recent paper published in Phys.Rev.Lett.133,152503(2024),H.Zhang,T.Li,and X.Wang predicted that modern intense lasers can induce highly nonlinear responses in the 229 Th nucleus for the first time,which is an astonishing effect of light-nucleus interactions.This phenomenon is underpinned by two key factors:(1)the presence of a very low-lying nuclear excited state and(2)a nuclear hyperfine mixing effect that significantly enhances light-nucleus coupling.The resulting highly nonlinear responses facilitate efficient nuclear excitation and enable coherent light emission from the nucleus,resulting in high harmonic generation.229 Th presents a promising platform for advancements in both laser-nuclear physics and nuclear clock development.The pioneering work by Zhang et al.marks a new frontier in light-matter interactions.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the genera...A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.展开更多
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space ...Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space spin texture may also break inversion symmetry and result in NLHE.We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity(NLHC)in three-dimensional magnetic systems.The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture.The leading order contribution of NLHC,χ_(abb),is proportional to the emergent toroidal moment T_(α)^(e),which reflects how the spin textures wind in three dimensions.展开更多
The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of no...The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of nonlinear optics of nuclear reactions and the well-dressed repulsive-core solitons.On the base of this model,we reveal the most intriguing properties of the nonlinear tunneling of nucleus-like solitons and the soliton selfinduced sub-barrier transparency effect.We describe novel interesting and stimulating analogies between the interaction of nucleus-like solitons on the repulsive barrier and nuclear sub-barrier reactions.The main finding of this study concerns the conservation of total number of nucleons(or the baryon number)in nuclear-like soliton reactions.We show that inelastic interactions among well-dressed repulsive-core solitons arise only when a“cloud”of“dressing”spectral side-bands appears in the frequency spectra of the solitons.This property of nucleus-like solitons is directly related to the nuclear density distribution described by the dimensionless small shape-squareness parameter.Thus the Fourier spectra of nucleus-like solitons are similar to the nuclear form factors.We show that the nuclear-like reactions between well-dressed solitons are realized by“exchange”between“particle-like”side bands in their spectra.展开更多
When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order non...When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schr¨odinger equation, we analytically explore the evolution of optical solitons in the presence of highorder nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.展开更多
Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting ...Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting the incremental integration of the state variables into system parameters.However,this approach cannot solve memristive systems in the presence of nonlinear terms other than the memristor term.In addition,the converted state variables may suffer from a degree of divergence.To allow simpler mechanistic analysis and physical implementation of extreme multistability phenomena,this paper uses a multiple mixed state variable incremental integration(MMSVII)method,which successfully reconstructs a four-dimensional hyperchaotic jerk system with multiple cubic nonlinearities except for the memristor term in a three-dimensional model using a clever linear state variable mapping that eliminates the divergence of the state variables.Finally,the simulation circuit of the reduced-dimension system is constructed using Multisim simulation software and the simulation results are consistent with the MATLAB numerical simulation results.The results show that the method of MMSVII proposed in this paper is useful for analyzing extreme multistable systems with multiple higher-order nonlinear terms.展开更多
The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipati...We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipative vector vortices(DVVs)that possess diverse vorticity values.Numerous fundamental characteristics of the DVVs are examined,encompassing amplitude profiles,energy fluxes,parameter effects,as well as linear and dynamic stability.展开更多
The present paper chooses a dusty plasma as an example to numerically and analytically study the differences between two different methods of obtaining nonlinear Schrödinger equation(NLSE).The first method is to ...The present paper chooses a dusty plasma as an example to numerically and analytically study the differences between two different methods of obtaining nonlinear Schrödinger equation(NLSE).The first method is to derive a Korteweg–de Vries(KdV)-type equation and then derive the NLSE from the KdV-type equation,while the second one is to directly derive the NLSE from the original equation.It is found that the envelope waves from the two methods have different dispersion relations,different group velocities.The results indicate that two envelope wave solutions from two different methods are completely different.The results also show that the application scope of the envelope wave obtained from the second method is wider than that of the first one,though both methods are valuable in the range of their corresponding application scopes.It is suggested that,for other systems,both methods to derive NLSE may be correct,but their nonlinear wave solutions are different and their application scopes are also different.展开更多
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio...We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term.展开更多
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co...We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.展开更多
A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-de...A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.展开更多
Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high v...Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.展开更多
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature...Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.展开更多
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
文摘In a recent paper published in Phys.Rev.Lett.133,152503(2024),H.Zhang,T.Li,and X.Wang predicted that modern intense lasers can induce highly nonlinear responses in the 229 Th nucleus for the first time,which is an astonishing effect of light-nucleus interactions.This phenomenon is underpinned by two key factors:(1)the presence of a very low-lying nuclear excited state and(2)a nuclear hyperfine mixing effect that significantly enhances light-nucleus coupling.The resulting highly nonlinear responses facilitate efficient nuclear excitation and enable coherent light emission from the nucleus,resulting in high harmonic generation.229 Th presents a promising platform for advancements in both laser-nuclear physics and nuclear clock development.The pioneering work by Zhang et al.marks a new frontier in light-matter interactions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790000)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008)National Natural Science Foundation of China(Nos.12275236 and 12261131622)。
文摘A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金supported by the Startup Foundation in Tiangong University(Grant No.63010201/52010399)supported by the Office of Basic Energy Sciences,Division of Materials Sciences and Engineering,U.S.Department of Energy(Grant No.DE-SC0020221)。
文摘Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space spin texture may also break inversion symmetry and result in NLHE.We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity(NLHC)in three-dimensional magnetic systems.The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture.The leading order contribution of NLHC,χ_(abb),is proportional to the emergent toroidal moment T_(α)^(e),which reflects how the spin textures wind in three dimensions.
文摘The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of nonlinear optics of nuclear reactions and the well-dressed repulsive-core solitons.On the base of this model,we reveal the most intriguing properties of the nonlinear tunneling of nucleus-like solitons and the soliton selfinduced sub-barrier transparency effect.We describe novel interesting and stimulating analogies between the interaction of nucleus-like solitons on the repulsive barrier and nuclear sub-barrier reactions.The main finding of this study concerns the conservation of total number of nucleons(or the baryon number)in nuclear-like soliton reactions.We show that inelastic interactions among well-dressed repulsive-core solitons arise only when a“cloud”of“dressing”spectral side-bands appears in the frequency spectra of the solitons.This property of nucleus-like solitons is directly related to the nuclear density distribution described by the dimensionless small shape-squareness parameter.Thus the Fourier spectra of nucleus-like solitons are similar to the nuclear form factors.We show that the nuclear-like reactions between well-dressed solitons are realized by“exchange”between“particle-like”side bands in their spectra.
基金supported by the Scientific Research Foundation of Weifang University of Science and Technology (Grant Nos.KJRC2022002 and KJRC2023035)。
文摘When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schr¨odinger equation, we analytically explore the evolution of optical solitons in the presence of highorder nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071411)the Research Foundation of Education Department of Hunan Province,China(Grant No.20B567).
文摘Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting the incremental integration of the state variables into system parameters.However,this approach cannot solve memristive systems in the presence of nonlinear terms other than the memristor term.In addition,the converted state variables may suffer from a degree of divergence.To allow simpler mechanistic analysis and physical implementation of extreme multistability phenomena,this paper uses a multiple mixed state variable incremental integration(MMSVII)method,which successfully reconstructs a four-dimensional hyperchaotic jerk system with multiple cubic nonlinearities except for the memristor term in a three-dimensional model using a clever linear state variable mapping that eliminates the divergence of the state variables.Finally,the simulation circuit of the reduced-dimension system is constructed using Multisim simulation software and the simulation results are consistent with the MATLAB numerical simulation results.The results show that the method of MMSVII proposed in this paper is useful for analyzing extreme multistable systems with multiple higher-order nonlinear terms.
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11705164 and 11874324).
文摘We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipative vector vortices(DVVs)that possess diverse vorticity values.Numerous fundamental characteristics of the DVVs are examined,encompassing amplitude profiles,energy fluxes,parameter effects,as well as linear and dynamic stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965019 and 42004131)the Foundation of Gansu Educational Committee(Grant No.2022QB-178).
文摘The present paper chooses a dusty plasma as an example to numerically and analytically study the differences between two different methods of obtaining nonlinear Schrödinger equation(NLSE).The first method is to derive a Korteweg–de Vries(KdV)-type equation and then derive the NLSE from the KdV-type equation,while the second one is to directly derive the NLSE from the original equation.It is found that the envelope waves from the two methods have different dispersion relations,different group velocities.The results indicate that two envelope wave solutions from two different methods are completely different.The results also show that the application scope of the envelope wave obtained from the second method is wider than that of the first one,though both methods are valuable in the range of their corresponding application scopes.It is suggested that,for other systems,both methods to derive NLSE may be correct,but their nonlinear wave solutions are different and their application scopes are also different.
基金supported by the JSPS KAKENHI(JP22K03386)supported by the JST SPRING(JPMJSP2132)。
文摘We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term.
基金supported by the NSFC(12261044)the STP of Education Department of Jiangxi Province of China(GJJ210302)。
文摘We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.
基金Project supported by the National Key R&D Program of China (Grant Nos.2018YFA, 0305601, and 2021YFA1400100)the National Natural Science Foundation of China (Grant Nos.12274003, 11725415, and 11934001)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302600)。
文摘A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.
基金Project supported by the National Natural Science Foundation of China(Grant No.12002089)the Science and Technology Projects in Guangzhou(Grant No.2023A04J1323)UKRI Horizon Europe Guarantee(Grant No.EP/Y016130/1)。
文摘Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400)the State Key Program of the National Natural Science of China(Grant No.11834008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174192,12174188,and 11974176)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202410)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701).
文摘Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.