The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first ste...The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.展开更多
We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pu...We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.展开更多
The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, t...The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.展开更多
文摘The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974060 and U19A2077).
文摘We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.
文摘The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.