Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
为解决因排查效率低、数据更新不及时等因素导致低压配电网户变关系连接形式与实际不符的问题,提出一种基于角度分段线性近似(anglepiecewiselinearrepresentation,APLR)和改进密度峰值聚类(improved clustering by fast search find of...为解决因排查效率低、数据更新不及时等因素导致低压配电网户变关系连接形式与实际不符的问题,提出一种基于角度分段线性近似(anglepiecewiselinearrepresentation,APLR)和改进密度峰值聚类(improved clustering by fast search find of density peaks,ICFSFDP)相结合的户变关系识别方法。首先,根据电压曲线中相邻线段的角度变化量提取曲线的转折点,利用APLR对曲线进行自适应降维重构;随后,使用ICFSFDP算法对降维数据组展开聚类分析,在决策图中由拟合函数与坐标轴围成面积的最小值得到最优类簇数目,进而得到聚类和非聚类中心用户;最后,使用动态时间弯曲(dynamic time warping,DTW)距离计算聚类和非聚类中心用户之间的距离相似度,进而得到户变关系。将所提方法应用于模拟和真实数据中,均可证实所提方法的有效性。算例分析结果表明:该方法能够对时间间隔不同、不等维的序列进行分析,且不需要人为设定聚类算法的参数,户变关系识别准确率高。展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different...This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.展开更多
In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface met...In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface methodology(RSM).Analysis of variance(ANOVA)was used to investigate the significance of the developed regression models.The results showed that the coefficient of determination values(R^2)for the developed models was 97.46%for dry,89.32%for flood mode(FM),and 99.44%for MQL,showing the high accuracy of fitted models.Also,under the minimum quantity lubrication(MQL)condition,the surface roughness improved by 23%−44%and 19%−41%compared with dry and FM,respectively,and the SEM images of machined surface proved the statement.The prepared SEM images of tool rake face also showed a considerable decrease in adhesion wear.Built-up edge and built-up layer were the two main products of the adhesion wear,and energy-dispersive X-ray spectroscopy(EDX)analysis of specific points on the tool faces helped to discover the chemical compositions of adhered materials.By changing dry and FM to MQL mode,dominant mechanism of tool wear in machining aluminum alloy was significantly decreased.Breakage wear that led to early failure of cutting edge was also controlled by MQL technique.展开更多
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘为解决因排查效率低、数据更新不及时等因素导致低压配电网户变关系连接形式与实际不符的问题,提出一种基于角度分段线性近似(anglepiecewiselinearrepresentation,APLR)和改进密度峰值聚类(improved clustering by fast search find of density peaks,ICFSFDP)相结合的户变关系识别方法。首先,根据电压曲线中相邻线段的角度变化量提取曲线的转折点,利用APLR对曲线进行自适应降维重构;随后,使用ICFSFDP算法对降维数据组展开聚类分析,在决策图中由拟合函数与坐标轴围成面积的最小值得到最优类簇数目,进而得到聚类和非聚类中心用户;最后,使用动态时间弯曲(dynamic time warping,DTW)距离计算聚类和非聚类中心用户之间的距离相似度,进而得到户变关系。将所提方法应用于模拟和真实数据中,均可证实所提方法的有效性。算例分析结果表明:该方法能够对时间间隔不同、不等维的序列进行分析,且不需要人为设定聚类算法的参数,户变关系识别准确率高。
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
文摘This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.
文摘In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface methodology(RSM).Analysis of variance(ANOVA)was used to investigate the significance of the developed regression models.The results showed that the coefficient of determination values(R^2)for the developed models was 97.46%for dry,89.32%for flood mode(FM),and 99.44%for MQL,showing the high accuracy of fitted models.Also,under the minimum quantity lubrication(MQL)condition,the surface roughness improved by 23%−44%and 19%−41%compared with dry and FM,respectively,and the SEM images of machined surface proved the statement.The prepared SEM images of tool rake face also showed a considerable decrease in adhesion wear.Built-up edge and built-up layer were the two main products of the adhesion wear,and energy-dispersive X-ray spectroscopy(EDX)analysis of specific points on the tool faces helped to discover the chemical compositions of adhered materials.By changing dry and FM to MQL mode,dominant mechanism of tool wear in machining aluminum alloy was significantly decreased.Breakage wear that led to early failure of cutting edge was also controlled by MQL technique.