Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the ph...The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.展开更多
In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic su...In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.展开更多
A minimum distortion direction prediction-based novel fast half-pixel motion vector search algorithm is proposed, which can reduce considerably the computation load of half-pixel search. Based on the single valley cha...A minimum distortion direction prediction-based novel fast half-pixel motion vector search algorithm is proposed, which can reduce considerably the computation load of half-pixel search. Based on the single valley characteristic of half-pixel error matching function inside search grid, the minimum distortion direction is predicted with the help of comparative results of sum of absolute difference(SAD) values of four integer-pixel points around integer-pixel motion vector. The experimental results reveal that, to all kinds of video sequences, the proposed algorithm can obtain almost the same video quality as that of the half-pixel full search algorithm with a decrease of computation cost by more than 66%.展开更多
A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimati...A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimation of non stationary noise. It allows for an automatic adaptation in time and frequency of the parametric enhancement system, and finds the best tradeoff among the amount of noise reduction, the speech distortion, and the level of musical residual noise based on a criterion correlated with perception and SNR. This leads to a significant reduction of the unnatural structure of the residual noise. The results with several noise types show that the enhanced speech is more pleasant to a human listener.展开更多
随着大量分布式能源的接入,配电系统的运行与控制方式愈加复杂。针对配电网状态估计方法面临分布式电源波动数据辨识困难、估计精度低、鲁棒性与估计时效性差等问题,提出一种基于集成深度神经网络的配电网分布式状态估计方法。首先,利...随着大量分布式能源的接入,配电系统的运行与控制方式愈加复杂。针对配电网状态估计方法面临分布式电源波动数据辨识困难、估计精度低、鲁棒性与估计时效性差等问题,提出一种基于集成深度神经网络的配电网分布式状态估计方法。首先,利用量测数据相关性检验的数据辨识技术识别不良数据和新能源波动数据。在此基础上,利用时域卷积网络(temporal convolutional network,TCN)-双向长短期记忆网络(bidirectional long short term memory,BILSTM)对不良数据进行修正。然后,建立集成深度神经网络(deep neural network,DNN)状态估计模型,采用最大相关-最小冗余(maximum relevance-minimum redundancy,MRMR)的方法优化训练样本,从而提高状态估计的精度和鲁棒性。最后,建立分布式集成深度神经网络模型,弥补了集中式状态估计速度慢的不足,从而提高状态估计效率。基于IEEE123配电网的算例分析表明,所提方法能更准确地辨识分布式电源波动数据和不良数据,同时提高状态估计的精度和效率,且具有较高的鲁棒性。展开更多
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the National Natural Science Foundation of China(60532030)
文摘The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.
基金supported by the National Natural Science Foundation of China (6096200161071088)+2 种基金the Natural Science Foundation of Fujian Province of China (2012J05119)the Fundamental Research Funds for the Central Universities (11QZR02)the Research Fund of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (21104)
文摘In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.
文摘A minimum distortion direction prediction-based novel fast half-pixel motion vector search algorithm is proposed, which can reduce considerably the computation load of half-pixel search. Based on the single valley characteristic of half-pixel error matching function inside search grid, the minimum distortion direction is predicted with the help of comparative results of sum of absolute difference(SAD) values of four integer-pixel points around integer-pixel motion vector. The experimental results reveal that, to all kinds of video sequences, the proposed algorithm can obtain almost the same video quality as that of the half-pixel full search algorithm with a decrease of computation cost by more than 66%.
文摘A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimation of non stationary noise. It allows for an automatic adaptation in time and frequency of the parametric enhancement system, and finds the best tradeoff among the amount of noise reduction, the speech distortion, and the level of musical residual noise based on a criterion correlated with perception and SNR. This leads to a significant reduction of the unnatural structure of the residual noise. The results with several noise types show that the enhanced speech is more pleasant to a human listener.
文摘随着大量分布式能源的接入,配电系统的运行与控制方式愈加复杂。针对配电网状态估计方法面临分布式电源波动数据辨识困难、估计精度低、鲁棒性与估计时效性差等问题,提出一种基于集成深度神经网络的配电网分布式状态估计方法。首先,利用量测数据相关性检验的数据辨识技术识别不良数据和新能源波动数据。在此基础上,利用时域卷积网络(temporal convolutional network,TCN)-双向长短期记忆网络(bidirectional long short term memory,BILSTM)对不良数据进行修正。然后,建立集成深度神经网络(deep neural network,DNN)状态估计模型,采用最大相关-最小冗余(maximum relevance-minimum redundancy,MRMR)的方法优化训练样本,从而提高状态估计的精度和鲁棒性。最后,建立分布式集成深度神经网络模型,弥补了集中式状态估计速度慢的不足,从而提高状态估计效率。基于IEEE123配电网的算例分析表明,所提方法能更准确地辨识分布式电源波动数据和不良数据,同时提高状态估计的精度和效率,且具有较高的鲁棒性。