Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算...在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.展开更多
针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复...针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复杂度,使系统检测性能得到了明显改善.在多散射物无线通信环境下进行仿真实验,结果表明,与传统的算法相比,提案算法在保证相同信噪比,误码率没有显著变化的前提下,系统检测复杂度明显改善.理论分析证明,系统中有效天线数目越多,所提出的算法优越性越明显.展开更多
非线性码间干扰是影响卫星通信的重要因素之一,需要有效消除或降低这种影响。在用Volterra级数分解表示非线性信道基础上,提出了基于线性MMSE(Minimum Mean Square Error)的Turbo均衡算法,以解决非线性码间干扰问题。通过对基于线性MMSE...非线性码间干扰是影响卫星通信的重要因素之一,需要有效消除或降低这种影响。在用Volterra级数分解表示非线性信道基础上,提出了基于线性MMSE(Minimum Mean Square Error)的Turbo均衡算法,以解决非线性码间干扰问题。通过对基于线性MMSE的Turbo均衡算法作无先验信息和低复杂度的MMSE近似处理,在不降低均衡性能的前提下,既能同时消除线性和非线性干扰,又能大大降低计算复杂度。仿真验证了该算法的有效性。展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.
文摘针对采用最小均方误差(minimum mean square error,MMSE)检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了用一种基于迭代QR分解的MMSE V-BLAST算法,避免了伪逆运算,有效地降低了检测算法的复杂度,使系统检测性能得到了明显改善.在多散射物无线通信环境下进行仿真实验,结果表明,与传统的算法相比,提案算法在保证相同信噪比,误码率没有显著变化的前提下,系统检测复杂度明显改善.理论分析证明,系统中有效天线数目越多,所提出的算法优越性越明显.
文摘非线性码间干扰是影响卫星通信的重要因素之一,需要有效消除或降低这种影响。在用Volterra级数分解表示非线性信道基础上,提出了基于线性MMSE(Minimum Mean Square Error)的Turbo均衡算法,以解决非线性码间干扰问题。通过对基于线性MMSE的Turbo均衡算法作无先验信息和低复杂度的MMSE近似处理,在不降低均衡性能的前提下,既能同时消除线性和非线性干扰,又能大大降低计算复杂度。仿真验证了该算法的有效性。