The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that ...The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.展开更多
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g...The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.展开更多
The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this wor...The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.展开更多
In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are...In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-ge...SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-gel and carbonization reduction process.The results showed that the effective electromagnetic microwave absorption capacity of SiC aerogel was highly increased after being pyrolyzed at 1500℃,which presented a minimum reflection loss value of-57.80 dB at 3.10 mm and 9.86 GHz.Besides,the electromagnetic parameters of SiC aerogel with different paraffin ratios were discussed as well as the varying electromagnetic microwave absorption performances.The minimum reflection loss value first rose then fell as the SiC/paraffin ratio increased,which demonstrated the importance of SiC content.This study establishes the theoretical foundation for the subsequent functional application of SiC aerogel.展开更多
The application of microwave irradiation for pretreatment of copper anode slime with high nickel content prior to pressure sulfuric acid leaching has been proposed.The microwave-assisted pretreatment is a rapid and ef...The application of microwave irradiation for pretreatment of copper anode slime with high nickel content prior to pressure sulfuric acid leaching has been proposed.The microwave-assisted pretreatment is a rapid and efficient process.Through the technology of microwave assisted pretreatment-pressure leaching of copper anode slime,copper,tellurium,selenium and nickel are almost completely recovered.Under optimal conditions,the leaching efficiencies of copper,tellurium,selenium and nickel are 97.12%,95.97%,95.37% and 93.90%,respectively.The effect of microwave radiation on the temperature of copper anode slime and leaching solution is investigated.It is suggested that the enhancement on the recoveries of copper,tellurium and selenium can be attributed to the temperature gradient which is caused by shallow microwave penetration depth and super heating occurring at the solid–liquid interface.The kinetic study shows that the pressure leaching of copper anode slime,with and without microwave assisted pretreatment,are both controlled by chemical reactions on the surfaces of particles.It is found that the activation energy calculated for microwave-assisted pretreatment-pressure leaching(49.47 kJ/mol) is lower than that for pressure leaching which is without microwave assisted pretreatment(60.57 kJ/mol).展开更多
The kinetic mechanism for the preparation of silymarin from milk thistle seeds was studied during the microwave-assisted extraction (MAE) process. The results showed that the transfer rate of silymarin from milk thi...The kinetic mechanism for the preparation of silymarin from milk thistle seeds was studied during the microwave-assisted extraction (MAE) process. The results showed that the transfer rate of silymarin from milk thistle seeds increased with the microwave output power and temperature during MAE processing. The apparent extraction rate constant k (s-1) was 1.2028×10-2 , 1.2248×10-2 , and 1.2485×10-2 , and diffusion coefficient D (m2·s-1 ) was 4.21×10-10, 4.29×10-10 , and 4.37×10-10 at the microwave temperatures of 383, 393, and 403 K, respectively, in the silymarin MAE process. With the help of scanning electron microscopy (SEM), the microstructures of the samples extracted by MAE were observed. The results revealed that the increased efficiency and rate of MAE of silymarin could be attributed mainly to the subsequent cell change resulting from superheating effects during MAE.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodo...Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.展开更多
The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantag...The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantages against the conventional recovery procedures. This paper presents a review of the advances in microwave technology applied to the recovery of precious metals from the secondary resources. Many different applications are considered, including microwave-assisted leaching, microwave augmented ashing and microwave pyrolysis. In general, microwave enhanced recovery of precious metals from secondary resources.展开更多
Low recovery rate,high energy consumption and serious pollution are existed in traditional processes of vanadium extraction.To seek a new process with high recovery rate,low energy consumption and less pollution disch...Low recovery rate,high energy consumption and serious pollution are existed in traditional processes of vanadium extraction.To seek a new process with high recovery rate,low energy consumption and less pollution discharge is of great significance.Microwave-aided roasting for vanadium extraction is an environmentally-friendly technology.Non-pollution roasting processes with additives following sodium carbonate and potassium carbonate,under microwave irradiation were investigated with stone coal.The valence variation of vanadium in oxidation roasting of the vanadium bearing stone coal was studied.The results showed that the oxidation process of vanadium was a stepwise process following V(Ⅲ)→V(Ⅳ)→V(Ⅴ).The roasted stone coal was characterized by XRD,SEM.Factors associated with extraction rate were investigated following roasting temperature,roasting time,microwave power,and amount of roasting additive.Comparing with conventional roasting process,the recovery rate was higher without air pollution.展开更多
The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specif...The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.展开更多
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
文摘The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.
基金supported by the National Natural Science Foundation of China(22178295,21706225)Natural Science Foundation of Hunan Province(2025JJ50085)Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.
基金National Natural Science Foundation of China (52302140)Major Scientific and Technological Innovation Project of Wenzhou (ZG2023040, ZG2023042)Joint Funds of the National Natural Science Foundation of China Key Program (U21B2068)。
文摘The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.
文摘In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
基金supported by various grants including the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155 and 2022A1515111200)Basic Research Programs of Taicang(Grant Nos.TC2023JC03 and TC2022JC08)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2023JC-QN-0380)Nantong Natural Science Foundation(Grant No.JC2023011)Shanghai Central Guidance Fund for Local Science and Technology Development(Grant No.YDZX20233100004009)。
文摘SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-gel and carbonization reduction process.The results showed that the effective electromagnetic microwave absorption capacity of SiC aerogel was highly increased after being pyrolyzed at 1500℃,which presented a minimum reflection loss value of-57.80 dB at 3.10 mm and 9.86 GHz.Besides,the electromagnetic parameters of SiC aerogel with different paraffin ratios were discussed as well as the varying electromagnetic microwave absorption performances.The minimum reflection loss value first rose then fell as the SiC/paraffin ratio increased,which demonstrated the importance of SiC content.This study establishes the theoretical foundation for the subsequent functional application of SiC aerogel.
基金Project(2012BAE06B05)supported by the National Science and Technology Support Program of ChinaProject(N130602004)supported by the Fundamental Research Funds for the Central Universities of China
文摘The application of microwave irradiation for pretreatment of copper anode slime with high nickel content prior to pressure sulfuric acid leaching has been proposed.The microwave-assisted pretreatment is a rapid and efficient process.Through the technology of microwave assisted pretreatment-pressure leaching of copper anode slime,copper,tellurium,selenium and nickel are almost completely recovered.Under optimal conditions,the leaching efficiencies of copper,tellurium,selenium and nickel are 97.12%,95.97%,95.37% and 93.90%,respectively.The effect of microwave radiation on the temperature of copper anode slime and leaching solution is investigated.It is suggested that the enhancement on the recoveries of copper,tellurium and selenium can be attributed to the temperature gradient which is caused by shallow microwave penetration depth and super heating occurring at the solid–liquid interface.The kinetic study shows that the pressure leaching of copper anode slime,with and without microwave assisted pretreatment,are both controlled by chemical reactions on the surfaces of particles.It is found that the activation energy calculated for microwave-assisted pretreatment-pressure leaching(49.47 kJ/mol) is lower than that for pressure leaching which is without microwave assisted pretreatment(60.57 kJ/mol).
基金Supported by the National Natural Science Foundation of China(31071579)the Key Program of the Natural Science Foundation of Heilongjiang Province of China(ZD201013)the Key Project of Education Department of Heilongjiang Province of China(125212003)
文摘The kinetic mechanism for the preparation of silymarin from milk thistle seeds was studied during the microwave-assisted extraction (MAE) process. The results showed that the transfer rate of silymarin from milk thistle seeds increased with the microwave output power and temperature during MAE processing. The apparent extraction rate constant k (s-1) was 1.2028×10-2 , 1.2248×10-2 , and 1.2485×10-2 , and diffusion coefficient D (m2·s-1 ) was 4.21×10-10, 4.29×10-10 , and 4.37×10-10 at the microwave temperatures of 383, 393, and 403 K, respectively, in the silymarin MAE process. With the help of scanning electron microscopy (SEM), the microstructures of the samples extracted by MAE were observed. The results revealed that the increased efficiency and rate of MAE of silymarin could be attributed mainly to the subsequent cell change resulting from superheating effects during MAE.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Supported by National Natural Science Foundation (31071579)Key Program of Heilongjiang Province Science Foundation (ZP201013)
文摘Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.
文摘The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantages against the conventional recovery procedures. This paper presents a review of the advances in microwave technology applied to the recovery of precious metals from the secondary resources. Many different applications are considered, including microwave-assisted leaching, microwave augmented ashing and microwave pyrolysis. In general, microwave enhanced recovery of precious metals from secondary resources.
基金supported by the National High Technology Research and Development Program of China(2008AA031202)Major Science&Technology of Chongqing(CSTC2008AA4026)foundation of Chongqing University for Young Talents to Promote the Innovative Force(qnjj2008-7)
文摘Low recovery rate,high energy consumption and serious pollution are existed in traditional processes of vanadium extraction.To seek a new process with high recovery rate,low energy consumption and less pollution discharge is of great significance.Microwave-aided roasting for vanadium extraction is an environmentally-friendly technology.Non-pollution roasting processes with additives following sodium carbonate and potassium carbonate,under microwave irradiation were investigated with stone coal.The valence variation of vanadium in oxidation roasting of the vanadium bearing stone coal was studied.The results showed that the oxidation process of vanadium was a stepwise process following V(Ⅲ)→V(Ⅳ)→V(Ⅴ).The roasted stone coal was characterized by XRD,SEM.Factors associated with extraction rate were investigated following roasting temperature,roasting time,microwave power,and amount of roasting additive.Comparing with conventional roasting process,the recovery rate was higher without air pollution.
基金Projects(51604135,51504116)supported by the National Natural Science Foundational of ChinaProject(YNWR-QNBJ-2018-323)supported by the Yunan Ten Thousand Talents Plan Young&Elite Talents Project,China。
文摘The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.